The Detonation Phenomenon

The Detonation Phenomenon PDF Author: John H. S. Lee
Publisher: Cambridge University Press
ISBN: 9780521897235
Category : Technology & Engineering
Languages : en
Pages : 400

Get Book Here

Book Description
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.

The Detonation Phenomenon

The Detonation Phenomenon PDF Author: John H. S. Lee
Publisher: Cambridge University Press
ISBN: 9780521897235
Category : Technology & Engineering
Languages : en
Pages : 400

Get Book Here

Book Description
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.

Thermodynamics, Gas Dynamics, and Combustion

Thermodynamics, Gas Dynamics, and Combustion PDF Author: Henry Clyde Foust III
Publisher: Springer Nature
ISBN: 3030873870
Category : Science
Languages : en
Pages : 408

Get Book Here

Book Description
This textbook provides students studying thermodynamics for the first time with an accessible and readable primer on the subject. The book is written in three parts: Part I covers the fundamentals of thermodynamics, Part II is on gas dynamics, and Part III focuses on combustion. Chapters are written clearly and concisely and include examples and problems to support the concepts outlined in the text. The book begins with a discussion of the fundamentals of thermodynamics and includes a thorough analysis of engineering devices. The book moves on to address applications in gas dynamics and combustion to include advanced topics such as two-phase critical flow and blast theory. Written for use in Introduction to Thermodynamics, Advanced Thermodynamics, and Introduction to Combustion courses, this book uniquely covers thermodynamics, gas dynamics, and combustion in a clear and concise manner, showing the integral connections at an advanced undergraduate or graduate student level.

Detonation Control for Propulsion

Detonation Control for Propulsion PDF Author: Jiun-Ming Li
Publisher: Springer
ISBN: 3319689061
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world’s first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.

Thermodynamics and Heat Powered Cycles

Thermodynamics and Heat Powered Cycles PDF Author: Chih Wu
Publisher: Nova Publishers
ISBN: 9781600210341
Category : Science
Languages : en
Pages : 684

Get Book Here

Book Description
Due to the rapid advances in computer technology, intelligent computer software and multimedia have become essential parts of engineering education. Software integration with various media such as graphics, sound, video and animation is providing efficient tools for teaching and learning. A modern textbook should contain both the basic theory and principles, along with an updated pedagogy. Often traditional engineering thermodynamics courses are devoted only to analysis, with the expectation that students will be introduced later to relevant design considerations and concepts. Cycle analysis is logically and traditionally the focus of applied thermodynamics. Type and quantity are constrained, however, by the computational efforts required. The ability for students to approach realistic complexity is limited. Even analyses based upon grossly simplified cycle models can be computationally taxing, with limited educational benefits. Computerised look-up tables reduce computational labour somewhat, but modelling cycles with many interactive loops can lie well outside the limits of student and faculty time budgets. The need for more design content in thermodynamics books is well documented by industry and educational oversight bodies such as ABET (Accreditation Board for Engineering and Technology). Today, thermodynamic systems and cycles are fertile ground for engineering design. For example, niches exist for innovative power generation systems due to deregulation, co-generation, unstable fuel costs and concern for global warming. Professor Kenneth Forbus of the computer science and education department at Northwestern University has developed ideal intelligent computer software for thermodynamic students called CyclePad. CyclePad is a cognitive engineering software. It creates a virtual laboratory where students can efficiently learn the concepts of thermodynamics, and allows systems to be analyzed and designed in a simulated, interactive computer aided design environment. The software guides students through a design process and is able to provide explanations for results and to coach students in improving designs. Like a professor or senior engineer, CyclePad knows the laws of thermodynamics and how to apply them. If the user makes an error in design, the program is able to remind the user of essential principles or design steps that may have been overlooked. If more help is needed, the program can provide a documented, case study that recounts how engineers have resolved similar problems in real life situations. CyclePad eliminates the tedium of learning to apply thermodynamics, and relates what the user sees on the computer screen to the design of actual systems. This integrated, engineering textbook is the result of fourteen semesters of CyclePad usage and evaluation of a course designed to exploit the power of the software, and to chart a path that truly integrates the computer with education. The primary aim is to give students a thorough grounding in both the theory and practice of thermodynamics. The coverage is compact without sacrificing necessary theoretical rigor. Emphasis throughout is on the applications of the theory to actual processes and power cycles. This book will help educators in their effort to enhance education through the effective use of intelligent computer software and computer assisted course work.

Fundamentals of Aircraft and Rocket Propulsion

Fundamentals of Aircraft and Rocket Propulsion PDF Author: Ahmed F. El-Sayed
Publisher: Springer
ISBN: 1447167961
Category : Technology & Engineering
Languages : en
Pages : 1025

Get Book Here

Book Description
This book provides a comprehensive basics-to-advanced course in an aero-thermal science vital to the design of engines for either type of craft. The text classifies engines powering aircraft and single/multi-stage rockets, and derives performance parameters for both from basic aerodynamics and thermodynamics laws. Each type of engine is analyzed for optimum performance goals, and mission-appropriate engines selection is explained. Fundamentals of Aircraft and Rocket Propulsion provides information about and analyses of: thermodynamic cycles of shaft engines (piston, turboprop, turboshaft and propfan); jet engines (pulsejet, pulse detonation engine, ramjet, scramjet, turbojet and turbofan); chemical and non-chemical rocket engines; conceptual design of modular rocket engines (combustor, nozzle and turbopumps); and conceptual design of different modules of aero-engines in their design and off-design state. Aimed at graduate and final-year undergraduate students, this textbook provides a thorough grounding in the history and classification of both aircraft and rocket engines, important design features of all the engines detailed, and particular consideration of special aircraft such as unmanned aerial and short/vertical takeoff and landing aircraft. End-of-chapter exercises make this a valuable student resource, and the provision of a downloadable solutions manual will be of further benefit for course instructors.

Propulsion and Power

Propulsion and Power PDF Author: Joachim Kurzke
Publisher: Springer
ISBN: 3319759795
Category : Technology & Engineering
Languages : en
Pages : 766

Get Book Here

Book Description
The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.

Spectroscopy and Optical Diagnostics for Gases

Spectroscopy and Optical Diagnostics for Gases PDF Author: Ronald K. Hanson
Publisher: Springer
ISBN: 3319232525
Category : Technology & Engineering
Languages : en
Pages : 290

Get Book Here

Book Description
This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students and practitioners across a range of applied sciences including mechanical, aerospace, chemical, and materials engineering.

Operation of a Cryogenic Rocket Engine

Operation of a Cryogenic Rocket Engine PDF Author: Wolfgang Kitsche
Publisher: Springer Science & Business Media
ISBN: 3642105653
Category : Technology & Engineering
Languages : en
Pages : 141

Get Book Here

Book Description
This book presents the operational aspects of the rocket engine on a test facility. It will be useful to engineers and scientists who are in touch with the test facility. To aerospace students it shall provide an insight of the job on the test facility. And to interested readers it shall provide an impression of this thrilling area of aerospace.

Advanced Thermodynamics for Engineers

Advanced Thermodynamics for Engineers PDF Author: D. Winterbone
Publisher: Butterworth-Heinemann
ISBN: 0080523366
Category : Science
Languages : en
Pages : 399

Get Book Here

Book Description
Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.

Fundamentals of Rocket Propulsion

Fundamentals of Rocket Propulsion PDF Author: DP Mishra
Publisher: CRC Press
ISBN: 1351708414
Category : Technology & Engineering
Languages : en
Pages : 364

Get Book Here

Book Description
The book follows a unified approach to present the basic principles of rocket propulsion in concise and lucid form. This textbook comprises of ten chapters ranging from brief introduction and elements of rocket propulsion, aerothermodynamics to solid, liquid and hybrid propellant rocket engines with chapter on electrical propulsion. Worked out examples are also provided at the end of chapter for understanding uncertainty analysis. This book is designed and developed as an introductory text on the fundamental aspects of rocket propulsion for both undergraduate and graduate students. It is also aimed towards practicing engineers in the field of space engineering. This comprehensive guide also provides adequate problems for audience to understand intricate aspects of rocket propulsion enabling them to design and develop rocket engines for peaceful purposes.