Thermo-Mechanical Processing of Metallic Materials

Thermo-Mechanical Processing of Metallic Materials PDF Author: Bert Verlinden
Publisher: Elsevier
ISBN: 0080544487
Category : Technology & Engineering
Languages : en
Pages : 551

Get Book Here

Book Description
Thermo-Mechanical Processing of Metallic Materials describes the science and technology behind modern thermo-mechanical processing (TMP), including detailed descriptions of successful examples of its application in the industry. This graduate-level introductory resource aims to fill the gap between two scientific approaches and illustrate their successful linkage by the use of suitable modern case studies. The book is divided into three key sections focusing on the basics of metallic materials processing. The first section covers the microstructural science base of the subject, including the microstructure determined mechanical properties of metals. The second section deals with the current mechanical technology of plastic forming of metals. The concluding section demonstrates the interaction of the first two disciplines in a series of case studies of successful current TMP processing and looks ahead to possible new developments in the field. This text is designed for use by graduate students coming into the field, for a graduate course textbook, and for Materials and Mechanical Engineers working in this area in the industry. * Covers both physical metallurgy and metals processing * Links basic science to real everyday applications * Written by four internationally-known experts in the field

Thermo-Mechanical Processing of Metallic Materials

Thermo-Mechanical Processing of Metallic Materials PDF Author: Bert Verlinden
Publisher: Elsevier
ISBN: 0080544487
Category : Technology & Engineering
Languages : en
Pages : 551

Get Book Here

Book Description
Thermo-Mechanical Processing of Metallic Materials describes the science and technology behind modern thermo-mechanical processing (TMP), including detailed descriptions of successful examples of its application in the industry. This graduate-level introductory resource aims to fill the gap between two scientific approaches and illustrate their successful linkage by the use of suitable modern case studies. The book is divided into three key sections focusing on the basics of metallic materials processing. The first section covers the microstructural science base of the subject, including the microstructure determined mechanical properties of metals. The second section deals with the current mechanical technology of plastic forming of metals. The concluding section demonstrates the interaction of the first two disciplines in a series of case studies of successful current TMP processing and looks ahead to possible new developments in the field. This text is designed for use by graduate students coming into the field, for a graduate course textbook, and for Materials and Mechanical Engineers working in this area in the industry. * Covers both physical metallurgy and metals processing * Links basic science to real everyday applications * Written by four internationally-known experts in the field

Modeling of Microstructure Evolution in Thermo-mechanical Processing of Metals

Modeling of Microstructure Evolution in Thermo-mechanical Processing of Metals PDF Author: Qiang Yu
Publisher:
ISBN:
Category : Metals
Languages : en
Pages : 256

Get Book Here

Book Description


Theory of Thermomechanical Processes in Welding

Theory of Thermomechanical Processes in Welding PDF Author: Andrzej Sluzalec
Publisher: Springer Science & Business Media
ISBN: 1402029918
Category : Technology & Engineering
Languages : en
Pages : 173

Get Book Here

Book Description
The main purpose of this book is to provide a unified and systematic continuum approach to engineers and applied physicists working on models of deformable welding material. The key concept is to consider the welding material as an thennodynamic system. Significant achievements include thermodynamics, plasticity, fluid flow and numerical methods. Having chosen point of view, this work does not intend to reunite all the information on the welding thermomechanics. The attention is focused on the deformation of welding material and its coupling with thermal effects. Welding is the process where the interrelation of temperature and deformation appears throughout the influence of thermal field on material properties and modification of the extent of plastic zones. Thermal effects can be studied with coupled or uncoupled theories of thermomechanical response. A majority of welding problems can be satisfactorily studied within an uncoupled theory. In such an approach the temperature enters the stress-strain relation through the thennal dilatation and influences the material constants. The heat conduction equation and the relations governing the stress field are considered separately. In welding a material is either in solid or in solid and liquid states. The flow of metal and solidification phenomena make the welding process very complex. The automobile, aircraft, nuclear and ship industries are experiencing a rapidly-growing need for tools to handle welding problems. The effective solutions of complex problems in welding became possible in the last two decades, because of the vigorous development of numerical methods for thermal and mechanical analysis.

Materials 87

Materials 87 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Thermomechanical Processing of High-Strength Low-Alloy Steels

Thermomechanical Processing of High-Strength Low-Alloy Steels PDF Author: Imao Tamura
Publisher: Butterworth-Heinemann
ISBN: 1483164055
Category : Technology & Engineering
Languages : en
Pages : 257

Get Book Here

Book Description
Thermomechanical Processing of High-Strength Low-Alloy Steels considers some advanced techniques and metallurgical bases for controlled-rolling. This book contains 12 chapters. In Chapter 1, the purpose of thermomechanical processing and historical survey is described, while in Chapter 2, the kinetics of phase transformations and refinement of grain size in steels are elaborated. The techniques and metallurgical bases for controlled-rolling in the recrystallization, non-recrystallization, and (? + y) regions are reviewed in Chapters 3 to 5. Chapters 6 and 7 discuss the deformation resistance during hot-rolling and restoration processes. The phase transformations during cooling following hot-rolling are mentioned in Chapter 8, followed by a summarization of the effects of alloying elements in Chapter 9. Chapters 10 and 11 deal with the mechanical properties of controlled-rolled steel and prediction and control of microstructure and properties by thermomechanical processes. The problems faced and possibilities for future developments are stated in the last chapter. This publication is recommended for physicists, metallurgists, and researchers concerned with controlled-rolling, including non-specialists who have some knowledge of metallurgy.

Thermomechanical Processing of Steels

Thermomechanical Processing of Steels PDF Author: Jose M. Rodriguez-Ibabe
Publisher: MDPI
ISBN: 3039433547
Category : Technology & Engineering
Languages : en
Pages : 210

Get Book Here

Book Description
This book gathers a collection of papers summarizing some of the latest developments in the thermomechanical processing of steels. The replacement of conventional rolling plus post-rolling heat treatments by integrated controlled forming and cooling strategies implies important reductions in energy consumption, increases in productivity and more compact facilities in the steel industry. The metallurgical challenges that this integration implies, though, are relevant and impressive developments that have been achieved over the last 40 years. The frequency of the development of new steel grades and processing technologies devoted to thermomechanically processed products is increasing, and their implementation is being expended to higher value added products and applications. In addition to the metallurgical peculiarities and relationships between chemical composition, process and final properties, the relevance impact of advanced characterization techniques and innovative modelling strategies provides new tools to achieve the further deployment of the TMCP technologies. The contents of the book cover low carbon microalloyed grades, ferritic stainless steels and Fe–Al–Cr alloys, medium-Mn steels, and medium carbon grades. Authors of the chapters of this "Thermomechanical Processing of Steels" book represent some of the most relevant research groups from both the steel industry and academia.

Thermomechanical Processing in Theory, Modelling and Practice (TMP)2

Thermomechanical Processing in Theory, Modelling and Practice (TMP)2 PDF Author: Bevis Hutchinson
Publisher: ASM International(OH)
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 440

Get Book Here

Book Description


The Material Behavior During Thermo-mechanical Processing and the Effect of Microstructure on the Mechanical Properties and Stretch Formability of Al-1.25% Mn Alloy (3003)

The Material Behavior During Thermo-mechanical Processing and the Effect of Microstructure on the Mechanical Properties and Stretch Formability of Al-1.25% Mn Alloy (3003) PDF Author: Young Jik Kwag
Publisher:
ISBN:
Category : Aluminum-manganese alloys
Languages : en
Pages : 522

Get Book Here

Book Description


Mechanical Properties in Progressive Mechanically Processed Metallic Materials

Mechanical Properties in Progressive Mechanically Processed Metallic Materials PDF Author: Radim Kocich
Publisher: MDPI
ISBN: 3036500766
Category : Technology & Engineering
Languages : en
Pages : 256

Get Book Here

Book Description
The demands on innovative materials given by the ever-increasing requirements of contemporary industry require the use of high-performance engineering materials. The properties of materials and alloys are a result of their structures, which can primarily be affected by the preparation/production process. However, the production of materials featuring high levels of the required properties without the necessity to use costly alloying elements or time- and money-demanding heat treatment technologies typically used to enhance the mechanical properties of metallic materials (especially specific strength) still remains a challenge. The introduction of thermomechanical treatment represented a breakthrough in grain refinement, consequently leading to significant improvement of the mechanical properties of metallic materials. Contrary to conventional production technologies, the main advantage of such treatment is the possibility to precisely control structural phenomena that affect the final mechanical and utility properties. Thermomechanical treatment can only decrease the grain size to the scale of microns. However, further research devoted to pushing materials’ performance beyond the limits led to the introduction of severe plastic deformation (SPD) methods providing producers with the ability to acquire ultra-fine-grained and nanoscaled metallic materials with superior mechanical properties. SPD methods can be performed with the help of conventional forming equipment; however, many newly designed processes have also been introduced.

Additive Manufacturing of Metals

Additive Manufacturing of Metals PDF Author: John O. Milewski
Publisher: Springer
ISBN: 3319582054
Category : Technology & Engineering
Languages : en
Pages : 351

Get Book Here

Book Description
This engaging volume presents the exciting new technology of additive manufacturing (AM) of metal objects for a broad audience of academic and industry researchers, manufacturing professionals, undergraduate and graduate students, hobbyists, and artists. Innovative applications ranging from rocket nozzles to custom jewelry to medical implants illustrate a new world of freedom in design and fabrication, creating objects otherwise not possible by conventional means. The author describes the various methods and advanced metals used to create high value components, enabling readers to choose which process is best for them. Of particular interest is how harnessing the power of lasers, electron beams, and electric arcs, as directed by advanced computer models, robots, and 3D printing systems, can create otherwise unattainable objects. A timeline depicting the evolution of metalworking, accelerated by the computer and information age, ties AM metal technology to the rapid evolution of global technology trends. Charts, diagrams, and illustrations complement the text to describe the diverse set of technologies brought together in the AM processing of metal. Extensive listing of terms, definitions, and acronyms provides the reader with a quick reference guide to the language of AM metal processing. The book directs the reader to a wealth of internet sites providing further reading and resources, such as vendors and service providers, to jump start those interested in taking the first steps to establishing AM metal capability on whatever scale. The appendix provides hands-on example exercises for those ready to engage in experiential self-directed learning.