Author: Randall F. Barron
Publisher: John Wiley & Sons
ISBN: 1118094530
Category : Science
Languages : en
Pages : 464
Book Description
The tools engineers need for effective thermal stress design Thermal stress concerns arise in many engineering situations, from aerospace structures to nuclear fuel rods to concrete highway slabs on a hot summer day. Having the tools to understand and alleviate these potential stresses is key for engineers in effectively executing a wide range of modern design tasks. Design for Thermal Stresses provides an accessible and balanced resource geared towards real-world applications. Presenting both the analysis and synthesis needed for accurate design, the book emphasizes key principles, techniques, and approaches for solving thermal stress problems. Moving from basic to advanced topics, chapters cover: Bars, beams, and trusses from a "strength of materials" perspective Plates, shells, and thick-walled vessels from a "theory of elasticity" perspective Thermal buckling in columns, beams, plates, and shells Written for students and working engineers, this book features numerous sample problems demonstrating concepts at work. In addition, appendices include important SI units, relevant material properties, and mathematical functions such as Bessel and Kelvin functions, as well as characteristics of matrices and determinants required for designing plates and shells. Suitable as either a working reference or an upper-level academic text, Design for Thermal Stresses gives students and professional engineers the information they need to meet today's thermal stress design challenges.
Thermal Stresses in Cylindrical Shells
Author: Rudolph Adolph Eisentraut
Publisher:
ISBN:
Category : Elastic plates and shells
Languages : en
Pages : 184
Book Description
Publisher:
ISBN:
Category : Elastic plates and shells
Languages : en
Pages : 184
Book Description
Design for Thermal Stresses
Author: Randall F. Barron
Publisher: John Wiley & Sons
ISBN: 1118094530
Category : Science
Languages : en
Pages : 464
Book Description
The tools engineers need for effective thermal stress design Thermal stress concerns arise in many engineering situations, from aerospace structures to nuclear fuel rods to concrete highway slabs on a hot summer day. Having the tools to understand and alleviate these potential stresses is key for engineers in effectively executing a wide range of modern design tasks. Design for Thermal Stresses provides an accessible and balanced resource geared towards real-world applications. Presenting both the analysis and synthesis needed for accurate design, the book emphasizes key principles, techniques, and approaches for solving thermal stress problems. Moving from basic to advanced topics, chapters cover: Bars, beams, and trusses from a "strength of materials" perspective Plates, shells, and thick-walled vessels from a "theory of elasticity" perspective Thermal buckling in columns, beams, plates, and shells Written for students and working engineers, this book features numerous sample problems demonstrating concepts at work. In addition, appendices include important SI units, relevant material properties, and mathematical functions such as Bessel and Kelvin functions, as well as characteristics of matrices and determinants required for designing plates and shells. Suitable as either a working reference or an upper-level academic text, Design for Thermal Stresses gives students and professional engineers the information they need to meet today's thermal stress design challenges.
Publisher: John Wiley & Sons
ISBN: 1118094530
Category : Science
Languages : en
Pages : 464
Book Description
The tools engineers need for effective thermal stress design Thermal stress concerns arise in many engineering situations, from aerospace structures to nuclear fuel rods to concrete highway slabs on a hot summer day. Having the tools to understand and alleviate these potential stresses is key for engineers in effectively executing a wide range of modern design tasks. Design for Thermal Stresses provides an accessible and balanced resource geared towards real-world applications. Presenting both the analysis and synthesis needed for accurate design, the book emphasizes key principles, techniques, and approaches for solving thermal stress problems. Moving from basic to advanced topics, chapters cover: Bars, beams, and trusses from a "strength of materials" perspective Plates, shells, and thick-walled vessels from a "theory of elasticity" perspective Thermal buckling in columns, beams, plates, and shells Written for students and working engineers, this book features numerous sample problems demonstrating concepts at work. In addition, appendices include important SI units, relevant material properties, and mathematical functions such as Bessel and Kelvin functions, as well as characteristics of matrices and determinants required for designing plates and shells. Suitable as either a working reference or an upper-level academic text, Design for Thermal Stresses gives students and professional engineers the information they need to meet today's thermal stress design challenges.
Theory of Thermal Stresses
Author: Bruno A. Boley
Publisher: Courier Corporation
ISBN: 0486143864
Category : Technology & Engineering
Languages : en
Pages : 610
Book Description
Highly regarded text presents detailed discussion of fundamental aspects of theory, background, problems with detailed solutions. Basics of thermoelasticity, heat transfer theory, thermal stress analysis, more. 1985 edition.
Publisher: Courier Corporation
ISBN: 0486143864
Category : Technology & Engineering
Languages : en
Pages : 610
Book Description
Highly regarded text presents detailed discussion of fundamental aspects of theory, background, problems with detailed solutions. Basics of thermoelasticity, heat transfer theory, thermal stress analysis, more. 1985 edition.
Thermal Stress Analysis of Composite Beams, Plates and Shells
Author: Erasmo Carrera
Publisher: Academic Press
ISBN: 0124200931
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
Thermal Stress Analysis of Composite Beams, Plates and Shells: Computational Modelling and Applications presents classic and advanced thermal stress topics in a cutting-edge review of this critical area, tackling subjects that have little coverage in existing resources. It includes discussions of complex problems, such as multi-layered cases using modern advanced computational and vibrational methods. Authors Carrera and Fazzolari begin with a review of the fundamentals of thermoelasticity and thermal stress analysis relating to advanced structures and the basic mechanics of beams, plates, and shells, making the book a self-contained reference. More challenging topics are then addressed, including anisotropic thermal stress structures, static and dynamic responses of coupled and uncoupled thermoelastic problems, thermal buckling, and post-buckling behavior of thermally loaded structures, and thermal effects on panel flutter phenomena, amongst others. - Provides an overview of critical thermal stress theory and its relation to beams, plates, and shells, from classical concepts to the latest advanced theories - Appeals to those studying thermoelasticity, thermoelastics, stress analysis, multilayered structures, computational methods, buckling, static response, and dynamic response - Includes the authors' unified formulation (UF) theory, along with cutting-edge topics that receive little coverage in other references - Covers metallic and composite structures, including a complete analysis and sample problems of layered structures, considering both mesh and meshless methods - Presents a valuable resource for those working on thermal stress problems in mechanical, civil, and aerospace engineering settings
Publisher: Academic Press
ISBN: 0124200931
Category : Technology & Engineering
Languages : en
Pages : 442
Book Description
Thermal Stress Analysis of Composite Beams, Plates and Shells: Computational Modelling and Applications presents classic and advanced thermal stress topics in a cutting-edge review of this critical area, tackling subjects that have little coverage in existing resources. It includes discussions of complex problems, such as multi-layered cases using modern advanced computational and vibrational methods. Authors Carrera and Fazzolari begin with a review of the fundamentals of thermoelasticity and thermal stress analysis relating to advanced structures and the basic mechanics of beams, plates, and shells, making the book a self-contained reference. More challenging topics are then addressed, including anisotropic thermal stress structures, static and dynamic responses of coupled and uncoupled thermoelastic problems, thermal buckling, and post-buckling behavior of thermally loaded structures, and thermal effects on panel flutter phenomena, amongst others. - Provides an overview of critical thermal stress theory and its relation to beams, plates, and shells, from classical concepts to the latest advanced theories - Appeals to those studying thermoelasticity, thermoelastics, stress analysis, multilayered structures, computational methods, buckling, static response, and dynamic response - Includes the authors' unified formulation (UF) theory, along with cutting-edge topics that receive little coverage in other references - Covers metallic and composite structures, including a complete analysis and sample problems of layered structures, considering both mesh and meshless methods - Presents a valuable resource for those working on thermal stress problems in mechanical, civil, and aerospace engineering settings
Thermal Stress Analyses
Author: D. J. Johns
Publisher: Elsevier
ISBN: 1483227049
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
Thermal Stress Analyses deals with both elastic and plastic thermal stresses produced from large variations in temperature and thermal expansion in materials whose properties are time-independent. This book is composed of eight chapters. The opening chapter illustrates the general three-dimensional thermoelastic problem, which requires the determination of stress, strains and displacements, when the body forces and boundary conditions are known while the next chapter demonstrate a simpler, two-dimensional formulation involving plane strain and plane stress. The succeeding five chapters describe thermal stresses in various structures, including in thin plates, beams, circular cylinders, and shells. The closing chapters consider the mechanism of thermal buckling and sundry design problems. This book is of value to mechanical engineers, and to mechanical engineering teachers and students.
Publisher: Elsevier
ISBN: 1483227049
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
Thermal Stress Analyses deals with both elastic and plastic thermal stresses produced from large variations in temperature and thermal expansion in materials whose properties are time-independent. This book is composed of eight chapters. The opening chapter illustrates the general three-dimensional thermoelastic problem, which requires the determination of stress, strains and displacements, when the body forces and boundary conditions are known while the next chapter demonstrate a simpler, two-dimensional formulation involving plane strain and plane stress. The succeeding five chapters describe thermal stresses in various structures, including in thin plates, beams, circular cylinders, and shells. The closing chapters consider the mechanism of thermal buckling and sundry design problems. This book is of value to mechanical engineers, and to mechanical engineering teachers and students.
Thermal Stresses
Author: Richard B. Hetnarski
Publisher: North Holland
ISBN:
Category : Science
Languages : en
Pages : 592
Book Description
The publication of this volume, the first in a series, is a major event for those interested in Applied Mechanics in general and Thermal Stresses in particular. It is only about thirty years ago that the first books devoted exclusively to the subject of Thermal Stresses appeared in print. Since then, many advances have been made, both in theory and in applications. Modern requirements in design and construction of a multitude of products require the evaluation of stresses and displacements caused by the temperature fields which change in time and space. It is hoped that the state-of-the-art articles in this series will stimulate interest in this field of research and will also be of assistance to engineers in their everyday work.
Publisher: North Holland
ISBN:
Category : Science
Languages : en
Pages : 592
Book Description
The publication of this volume, the first in a series, is a major event for those interested in Applied Mechanics in general and Thermal Stresses in particular. It is only about thirty years ago that the first books devoted exclusively to the subject of Thermal Stresses appeared in print. Since then, many advances have been made, both in theory and in applications. Modern requirements in design and construction of a multitude of products require the evaluation of stresses and displacements caused by the temperature fields which change in time and space. It is hoped that the state-of-the-art articles in this series will stimulate interest in this field of research and will also be of assistance to engineers in their everyday work.
Buckling of Bars, Plates, and Shells
Author: Robert Millard Jones
Publisher: Bull Ridge Corporation
ISBN: 0978722302
Category : Buckling (Mechanics)
Languages : en
Pages : 850
Book Description
Publisher: Bull Ridge Corporation
ISBN: 0978722302
Category : Buckling (Mechanics)
Languages : en
Pages : 850
Book Description
Thermal Stresses in Thin Shells
Author: Ji-Shao Yang
Publisher:
ISBN:
Category : Elastic plates and shells
Languages : en
Pages : 120
Book Description
Publisher:
ISBN:
Category : Elastic plates and shells
Languages : en
Pages : 120
Book Description
Thermal Stresses—Advanced Theory and Applications
Author: Richard B. Hetnarski
Publisher: Springer
ISBN: 3030104362
Category : Science
Languages : en
Pages : 657
Book Description
This is an advanced modern textbook on thermal stresses. It serves a wide range of readers, in particular, graduate and postgraduate students, scientists, researchers in various industrial and government institutes, and engineers working in mechanical, civil, and aerospace engineering. This volume covers diverse areas of applied mathematics, continuum mechanics, stress analysis, and mechanical design. This work treats a number of topics not presented in other books on thermal stresses, for example: theory of coupled and generalized thermoelasticity, finite and boundary element method in generalized thermoelasticity, thermal stresses in functionally graded structures, and thermal expansions of piping systems. The book starts from basic concepts and principles, and these are developed to more advanced levels as the text progresses. Nevertheless, some basic knowledge on the part of the reader is expected in classical mechanics, stress analysis, and mathematics, including vector and cartesian tensor analysis. This 2nd enhanced edition includes a new chapter on Thermally Induced Vibrations. The method of stiffness is added to Chapter 7. The variational principle for the Green-Lindsay and Green-Naghdi models have been added to Chapter 2 and equations of motion and compatibility equations in spherical coordinates to Chapter 3. Additional problems at the end of chapters were added.
Publisher: Springer
ISBN: 3030104362
Category : Science
Languages : en
Pages : 657
Book Description
This is an advanced modern textbook on thermal stresses. It serves a wide range of readers, in particular, graduate and postgraduate students, scientists, researchers in various industrial and government institutes, and engineers working in mechanical, civil, and aerospace engineering. This volume covers diverse areas of applied mathematics, continuum mechanics, stress analysis, and mechanical design. This work treats a number of topics not presented in other books on thermal stresses, for example: theory of coupled and generalized thermoelasticity, finite and boundary element method in generalized thermoelasticity, thermal stresses in functionally graded structures, and thermal expansions of piping systems. The book starts from basic concepts and principles, and these are developed to more advanced levels as the text progresses. Nevertheless, some basic knowledge on the part of the reader is expected in classical mechanics, stress analysis, and mathematics, including vector and cartesian tensor analysis. This 2nd enhanced edition includes a new chapter on Thermally Induced Vibrations. The method of stiffness is added to Chapter 7. The variational principle for the Green-Lindsay and Green-Naghdi models have been added to Chapter 2 and equations of motion and compatibility equations in spherical coordinates to Chapter 3. Additional problems at the end of chapters were added.
Stresses in Layered Shells of Revolution
Author: V. Kovarik
Publisher: Elsevier
ISBN: 1483291774
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
Shell structures are key components in a very wide range of engineering enterprises. The theory of layered shells of revolution under the quasistatic action of loading and temperature is the subject of this book. The shells treated here are in general of an asymmetric sandwich structure. A linear theory is developed which allows for a transition to shells with less layers, that is two-layered and homogeneous structures.The first half of the book is concerned with orthotropic elastic shells. In particular, it includes the membrane theory of cylindrical, spherical and conical shells, and the bending theory of cylindrical shells, storage tanks and pressure-vessels. In each of the numerical examples considered, an attempt is made to map different regimes of structural behaviour.The second half of the book is devoted to viscoelastic shells. First the time-invariant hereditary theory is presented, describing the response of viscoelastic materials. According to the correspondence principle of this theory the actual viscoelastic shell may be replaced by a conjugate elastic one. In this way many of the results from the first half of the book can be put to good use even for viscoelastic shells. The time-dependent material characteristics are taken into account by means of the time-temperature principle.In an appendix (Part VI), the mathematical prerequisites are presented. With viscoelasticity comes the need to employ further mathematical disciplines; integral equations and integral transformations are usually encountered. Here, instead, a different concept has been chosen, the distributional concept of Laurent Schwartz, which allows many problems to be tackled in a simple formal way. In discussing the distribution theory, a level accessible to a technical reader has been maintained.The book is intended as a textbook for students and teachers of structural and aeronautical engineering. The book will also appeal to a broad range of practising engineers working in areas of aeronautical, civil, and mechanical engineering, as well as to those working for firms dealing with shell structures.
Publisher: Elsevier
ISBN: 1483291774
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
Shell structures are key components in a very wide range of engineering enterprises. The theory of layered shells of revolution under the quasistatic action of loading and temperature is the subject of this book. The shells treated here are in general of an asymmetric sandwich structure. A linear theory is developed which allows for a transition to shells with less layers, that is two-layered and homogeneous structures.The first half of the book is concerned with orthotropic elastic shells. In particular, it includes the membrane theory of cylindrical, spherical and conical shells, and the bending theory of cylindrical shells, storage tanks and pressure-vessels. In each of the numerical examples considered, an attempt is made to map different regimes of structural behaviour.The second half of the book is devoted to viscoelastic shells. First the time-invariant hereditary theory is presented, describing the response of viscoelastic materials. According to the correspondence principle of this theory the actual viscoelastic shell may be replaced by a conjugate elastic one. In this way many of the results from the first half of the book can be put to good use even for viscoelastic shells. The time-dependent material characteristics are taken into account by means of the time-temperature principle.In an appendix (Part VI), the mathematical prerequisites are presented. With viscoelasticity comes the need to employ further mathematical disciplines; integral equations and integral transformations are usually encountered. Here, instead, a different concept has been chosen, the distributional concept of Laurent Schwartz, which allows many problems to be tackled in a simple formal way. In discussing the distribution theory, a level accessible to a technical reader has been maintained.The book is intended as a textbook for students and teachers of structural and aeronautical engineering. The book will also appeal to a broad range of practising engineers working in areas of aeronautical, civil, and mechanical engineering, as well as to those working for firms dealing with shell structures.