Thermal Strain Fatigue Modeling of a Matrix Alloy for a Metal Matrix Composite

Thermal Strain Fatigue Modeling of a Matrix Alloy for a Metal Matrix Composite PDF Author: BA. Lerch
Publisher:
ISBN:
Category : Alloys
Languages : en
Pages : 18

Get Book Here

Book Description
The Total Strain Version of the method of Strainrange Partitioning was used as the basis for modeling the thermomechanical fatigue resistance of the matrix material of the metal matrix composite, SCS-6/Ti-15-3. As prescribed by the model, the resistance was assessed through the use of bithermal creep-fatigue experiments. Bithermal temperatures of 205 and 427°C were imposed. A minimal number of strain limit-controlled, in-phase PP (pure fatigue, no creep) and CP (tensile creep) as well as out-of-phase PP (pure fatigue, no creep) and PC (compressive creep) experiments were conducted on conventional, axially-loaded, cylindrical-bar specimens. Inelastic strain range versus cyclic life curves for each of the Strainrange Partitioning bithermal cycles were evaluated and found to be nominally coincident. Cyclic elastic strain range versus inelastic strain range curves as well as elastic strain range versus life curves were documented for pure-fatigue and creep-fatigue conditions. The time-dependencies of these relationships were calibrated with the available data. These results enable the construction of total strain range versus fatigue life curves for thermomechanical fatigue for in- and out-of-phasing and for any arbitrary creep-time per cycle. Results are pplicable to the cyclic life prediction of metal matrix composites using the Ti-15-3 matrix material.

Thermal Strain Fatigue Modeling of a Matrix Alloy for a Metal Matrix Composite

Thermal Strain Fatigue Modeling of a Matrix Alloy for a Metal Matrix Composite PDF Author: BA. Lerch
Publisher:
ISBN:
Category : Alloys
Languages : en
Pages : 18

Get Book Here

Book Description
The Total Strain Version of the method of Strainrange Partitioning was used as the basis for modeling the thermomechanical fatigue resistance of the matrix material of the metal matrix composite, SCS-6/Ti-15-3. As prescribed by the model, the resistance was assessed through the use of bithermal creep-fatigue experiments. Bithermal temperatures of 205 and 427°C were imposed. A minimal number of strain limit-controlled, in-phase PP (pure fatigue, no creep) and CP (tensile creep) as well as out-of-phase PP (pure fatigue, no creep) and PC (compressive creep) experiments were conducted on conventional, axially-loaded, cylindrical-bar specimens. Inelastic strain range versus cyclic life curves for each of the Strainrange Partitioning bithermal cycles were evaluated and found to be nominally coincident. Cyclic elastic strain range versus inelastic strain range curves as well as elastic strain range versus life curves were documented for pure-fatigue and creep-fatigue conditions. The time-dependencies of these relationships were calibrated with the available data. These results enable the construction of total strain range versus fatigue life curves for thermomechanical fatigue for in- and out-of-phasing and for any arbitrary creep-time per cycle. Results are pplicable to the cyclic life prediction of metal matrix composites using the Ti-15-3 matrix material.

Proposed Framework for Thermomechanical Life Modeling of Metal Matrix Composites

Proposed Framework for Thermomechanical Life Modeling of Metal Matrix Composites PDF Author: Gary R. Halford
Publisher:
ISBN:
Category : Metallic composites
Languages : en
Pages : 20

Get Book Here

Book Description


Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling

Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling PDF Author: J. Bressers
Publisher: Springer Science & Business Media
ISBN: 9401586365
Category : Technology & Engineering
Languages : en
Pages : 497

Get Book Here

Book Description
The International Symposium "Fatigue under Thermal and Mechanical Loading", held at Petten (The Netherlands) on May 22-24, 1995, was jointly organized by the Institute for Advanced Materials of The Joint Research Centre, E. C. , and by the Societe Fran~se de Metallurgie et de Materiaux. The fast heating and cooling cycles experienced by many high temperature components cause thermally induced stresses, which often operate in combination with mechanical loads. The resulting thermal / mechanical fatigue cycle leads to material degradation mechanisms and failure modes typical of service cycles. The growing awareness that the synergism between the combined thermal and mechanical loads can not be reproduced by means of isothermal tests, has resulted in an increasing interest in thermal and thermo-mechanical fatigue testing. This trend has been reinforced by the constant pull by industry for more performant, yet safer high temperature systems, pushing the materials to the limit of their properties. Dedicated ASTM meetings in particular have set the scene for this area of research. The proceedings of the symposium organized by D. A. Spera and D. F. Mowbray in 1975 provided a reference book on thermal fatigue which reflects the knowledge and experimental capabilities of the mid-seventies.

Thermo-mechanical Fatigue Behavior of Materials

Thermo-mechanical Fatigue Behavior of Materials PDF Author: Huseyin Sehitoglu
Publisher: ASTM International
ISBN: 0803128533
Category : Alloys
Languages : en
Pages : 339

Get Book Here

Book Description


Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites

Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites PDF Author: John M. Kennedy
Publisher: ASTM International
ISBN: 0803113854
Category : Ceramic-matrix composites
Languages : en
Pages : 260

Get Book Here

Book Description
Of interest to researchers and practitioners in materials science, especially in the aerospace industry, 16 papers from a symposium in Atlanta, Georgia, November 1988 discuss the analysis, modeling, and behavior of both continuous and discontinuous ceramic and metal matrix composites, and methods of

Combined Thermal and Bending Fatigue of High-temperature Metal-matrix Composites: Computational Simulation

Combined Thermal and Bending Fatigue of High-temperature Metal-matrix Composites: Computational Simulation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 28

Get Book Here

Book Description


Metal Matrix Composites

Metal Matrix Composites PDF Author: Minoru Taya
Publisher: Elsevier
ISBN: 1483191133
Category : Technology & Engineering
Languages : en
Pages : 275

Get Book Here

Book Description
Metal Matrix Composites: Thermomechanical Behavior discusses metal matrix composites, elaborating on that consists of two phases—fiber as reinforcement and metal as matrix. This book focuses on polymer matrix composites, including topics in metal matrix composites ranging from processing to fracture mechanics. The three basic types of composite materials—dispersion-strengthened, particle-reinforced, and fiber (whisker)-reinforced, are also described in detail. Dispersion-strengthened is characterized by a microstructure consisting of an elemental matrix within which fine particles are uniformly dispersed, while particle-reinforced is indicated by dispersed particles of greater than 1.0 μm diameter with a volume fraction of 5 to 40%. Fiber (whisker)-reinforced provides a distinguishing microstructural feature of fiber-reinforced materials, such as that the reinforcing fiber has one long dimension, while the reinforcing particles of the other two types do not. This publication serves as a reference data book to students and researchers aiming to acquire knowledge of the thermomechanical behavior of metal matrix composites.

Simulation of Fatigue Behavior of High Temperature Metal Matrix Composites

Simulation of Fatigue Behavior of High Temperature Metal Matrix Composites PDF Author: CC. Chamis
Publisher:
ISBN:
Category : Computational simulations
Languages : en
Pages : 12

Get Book Here

Book Description
A generalized relatively new approach is described for the computational simulation of fatigue behavior of high temperature metal matrix composites (HT-MMCs). This theory is embedded in a specialty-purpose computer code. The effectiveness of the computer code to predict the fatigue behavior of HT-MMCs is demonstrated by applying it to a silicon-fiber/titanium-matrix HT-MMC. Comparative results are shown for mechanical fatigue, thermal fatigue, thermomechanical (in-phase and out-of-phase) fatigue, as well as the effects of oxidizing environments on fatigue life. These results show that the new approach reproduces available experimental data remarkably well.

Thermomechanical Fatigue Behavior of Materials

Thermomechanical Fatigue Behavior of Materials PDF Author: Michael A. McGaw
Publisher: ASTM International
ISBN: 0803134673
Category : Alloys
Languages : en
Pages : 330

Get Book Here

Book Description
"ASTM Stock Number: STP1428. - "Fourth Symposium on Thermomechanical Fatigue Behavior of Materials, held in Dallas, Texas on November 7-8, 2001. The Symposium was sponsored by ASTM Committee E08 on Fatigue and Fracture and its Subcommittee E08.05 on Cyclic Deformation and Fat. - Includes bibliographical references and indexes. ASTM International; 2011.

Titanium Matrix Composites

Titanium Matrix Composites PDF Author: Shankar Mall
Publisher: CRC Press
ISBN: 1000717658
Category : Technology & Engineering
Languages : en
Pages : 478

Get Book Here

Book Description
A review and summary of advancements related to mechanical behavior and related mechanics issues of titanium matrix composites (TMCs), a class of high-temperature materials useful in the propulsion and airframe components in advanced aerospace systems. After an introduction to TMCs, different authors review and summarise the advancements related to mechanical behavior and related mechanics issues of TMCs.