Thermal Biosensors Bioactivity Bioaffinity

Thermal Biosensors Bioactivity Bioaffinity PDF Author: Thomas Scheper
Publisher: Springer
ISBN: 3540498117
Category : Science
Languages : en
Pages : 243

Get Book Here

Book Description
The immobilized biocatalyst (IMB) is a key component of biotransformation systems that are used to transform substrates to desired products. The impro- ment of biocatalyst properties has a direct influence on the overall effectiveness of the process based on the biotransformation. The basic catalytic characte- stics of biocatalyst that are followed include kinetic properties, pH optima, stability, and inhibition. The investigation of catalytic properties of immobilized enzymes is still a time consuming procedure and is not always simple. In the 1980s, a major effort was made to standardize the rules by which IMB is char- terized. The Working Party of EFB on immobilized biocatalysts has formul- ed principles of individual methods, among them the requirement of kinetic characterization [1]. It was recommended to use a packed-bed reactor, equipped with temperature control and with infinite flow circulation. The system should be equipped with a post-column unit to measure the time-dependence of the product or substrate concentration [2, 3], the most commonly used analytical methods being spectrophotometry, chemiluminiscence, automatic titration, bioluminiscence, chromatography, polarimetry, and biosensors based on the oxygen electrode. There are two main drawbacks to the application of these methods: 1. The need to vary the analytical principles, depending on the chemical and physical-chemical properties of analytes; 2. In some cases, mainly in the study of hydrolytic enzymes, the natural s- strate must be replaced by an artificial one, that is chromolytic, chromogenic, chemiluminiscent, bioluminiscent, or fluorescent.

Thermal Biosensors Bioactivity Bioaffinity

Thermal Biosensors Bioactivity Bioaffinity PDF Author: Thomas Scheper
Publisher: Springer
ISBN: 3540498117
Category : Science
Languages : en
Pages : 243

Get Book Here

Book Description
The immobilized biocatalyst (IMB) is a key component of biotransformation systems that are used to transform substrates to desired products. The impro- ment of biocatalyst properties has a direct influence on the overall effectiveness of the process based on the biotransformation. The basic catalytic characte- stics of biocatalyst that are followed include kinetic properties, pH optima, stability, and inhibition. The investigation of catalytic properties of immobilized enzymes is still a time consuming procedure and is not always simple. In the 1980s, a major effort was made to standardize the rules by which IMB is char- terized. The Working Party of EFB on immobilized biocatalysts has formul- ed principles of individual methods, among them the requirement of kinetic characterization [1]. It was recommended to use a packed-bed reactor, equipped with temperature control and with infinite flow circulation. The system should be equipped with a post-column unit to measure the time-dependence of the product or substrate concentration [2, 3], the most commonly used analytical methods being spectrophotometry, chemiluminiscence, automatic titration, bioluminiscence, chromatography, polarimetry, and biosensors based on the oxygen electrode. There are two main drawbacks to the application of these methods: 1. The need to vary the analytical principles, depending on the chemical and physical-chemical properties of analytes; 2. In some cases, mainly in the study of hydrolytic enzymes, the natural s- strate must be replaced by an artificial one, that is chromolytic, chromogenic, chemiluminiscent, bioluminiscent, or fluorescent.

Applications of Cell Immobilisation Biotechnology

Applications of Cell Immobilisation Biotechnology PDF Author: Viktor Nedovic
Publisher: Springer Science & Business Media
ISBN: 140203363X
Category : Science
Languages : en
Pages : 556

Get Book Here

Book Description
Cell immobilisation biotechnology is a multidisciplinary area, shown to have an important impact on many scientific subdisciplines – including biomedicine, pharmacology, cosmetology, food and agricultural sciences, beverage production, industrial waste treatment, analytical applications, biologics production. "Cell Immobilisation Biotechnology" is an outcome of the editors’ intention to collate the extensive and widespread information on fundamental aspects and applications of immobilisation/encapsulation biotechnology into a comprehensive reference work and to provide an overview of the most recent results and developments in this domain. "Cell Immobilisation Biotechnology" is divided into the two book volumes, FOBI 8A and FOBI 8B. The FOBI 8A volume, Fundamentals of Cell Immobilisation Biotechnology, is dedicated to fundamental aspects of cell immobilisation while the present volume, FOBI 8B, Applications of Cell Immobilisation Biotechnology, deals with diverse applications of this technology.

Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications

Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications PDF Author: Mahmoud Nasrollahzadeh
Publisher: Elsevier
ISBN: 0323898912
Category : Science
Languages : en
Pages : 728

Get Book Here

Book Description
Biopolymers are becoming an increasingly important area of research as traditional chemical feedstocks run low and concerns about environmental impacts increase. One area of particular interest is their use for more sustainable development of metal nanoparticles. Biopolymer-Based Metal Nanoparticle Chemistry for Sustainability Applications, Volume 2 reviews key uses of biopolymers and biopolymer-based metal nanoparticles for a range of key sustainability-focused applications. After providing contextual examples of applications across the fields of food science, biomedicine and biochemistry, the book goes on to explore further sustainability-focused applications of Biopolymer-Based Metal Nanoparticles in such important areas as catalysis, environmental science, biosensing, and energy. - Provides an overview of biopolymer-based metal nanoparticles for a wide range of applications - Provides technological details on the synthesis of natural polymer-based metal nanoparticles - Explores the role of biopolymer-based metal nanoparticles for more sustainable catalytic processes

Biosensors in Food Safety and Quality

Biosensors in Food Safety and Quality PDF Author: Poonam Mishra
Publisher: CRC Press
ISBN: 0429535538
Category : Science
Languages : en
Pages : 665

Get Book Here

Book Description
Biosensors in food safety and quality have become indispensable in today’s world due to the requirement of food safety and security for human health and nutrition. This book covers various types of sensors and biosensors that can be used for food safety and food quality monitoring, but these are not limited to conventional sensors, such as temperature sensors, optical sensors, electrochemical sensors, calorimetric sensors, and pH sensors. The chapters are framed in a way that readers can experience the novel fabrication procedures of some advanced sensors, including lab-on-a-chip biosensors, IoT-based sensors, microcontroller-based sensors, and so on, particularly for fruits and vegetables, fermented products, plantation products, dairy-based products, heavy metal analysis in water, meat, fish, etc. Its simplistic presentation and pedagogical writing provide the necessary thrust and adequate information for beginners, scientists, and researchers. The book offers comprehensive coverage of the most essential topics, which include the following: Fundamentals of biosensors Overview of food safety and quality analysis Major toxicants of food and water Fabrication techniques of biosensors applicable for different segments of the food industry This book serves as a reference for scientific investigators who work on the assurance of food safety and security using biosensing principles as well as researchers developing biosensors for food analysis. It may also be used as a textbook for graduate-level courses in bioelectronics.

Biocatalyst Immobilization

Biocatalyst Immobilization PDF Author: Maria Lujan Ferreira
Publisher: Academic Press
ISBN: 0323913776
Category : Science
Languages : en
Pages : 460

Get Book Here

Book Description
Biocatalyst Immobilization: Foundations and Applications provides a comprehensive overview of biocatalytic immobilization processes, as well as methods for study, characterization and application. Early chapters discuss current progress in enzyme immobilization and methods for selecting and pretreating enzymes prior to immobilization, with an emphasis on navigating common challenges and employing enzyme supports and post immobilization treatments to impact enzymatic activity. Process-based chapters instruct on measuring and reporting on enzyme immobilization efficiency, protein final content, quantification of reaction products, and the use of nanomaterials to characterize immobilized enzymes. Later chapters examine recent advances, including novel enzymatic reactors, multi-enzymatic biocatalysts, enzymatic biosensors, whole cell immobilization, the industrial application of immobilized enzymes, and perspectives on future trends. - Provides a thorough overview of biocatalyst and enzyme immobilization for research and practical application - Presents methods based content that instructs in enzyme immobilization pretreatment, enzyme supports, post immobilization treatments, measuring enzyme immobilization efficiency, quantification of reaction products, and whole cell immobilization - Features chapter contributions from international leaders in the field

Uses of Immobilized Biological Compounds

Uses of Immobilized Biological Compounds PDF Author: George G. Guilbault
Publisher: Springer Science & Business Media
ISBN: 9401119325
Category : Technology & Engineering
Languages : en
Pages : 578

Get Book Here

Book Description
In Uses of Immobilized Biological Compounds the reader will find a comprehensive survey of the field written by acknowledged experts who met in Brixen, Italy, between May 9 and 14, 1993 for a NATO Advanced Research Workshop devoted to the topic. The resulting volume presents a critical review of the latest results in the area and sets guidelines for future research. The 53 reports presented here cover: (A) General Aspects of Immobilizing Biological Compounds; (B) Medical, Clinical and Pharmaceutical Applications; (C) Electrochemical Biosensors; (E) Defense Applications; (F) Immunosensors and Receptors; (G) Food, Environmental, Clinical and Analytical Applications; and (H) Biotechnology and Marketing. In short, all aspects of the area are presented, in a compact format which will appeal to undergraduates, technicians, and professional scientists in the food, clinical, environmental, pharmaceutical and industrial fields.

Analysis of Addictive and Misused Drugs

Analysis of Addictive and Misused Drugs PDF Author: John A. Adamovics
Publisher: CRC Press
ISBN: 9780824792381
Category : Science
Languages : en
Pages : 694

Get Book Here

Book Description
Examines the chromatographic and nonchromatographic methods available to identify, measure, and screen for nonmedical drug use, highlighting the latest technologies in immunochemical analysis, biosensors, thinlayer gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. A comprehensive alphabetic listing of over 400 controlled-use drugs is provided.

Recent Advances in Biosensor Technology: Volume 2

Recent Advances in Biosensor Technology: Volume 2 PDF Author: Vivek K. Chaturvedi
Publisher: Bentham Science Publishers
ISBN: 9815136429
Category : Science
Languages : en
Pages : 188

Get Book Here

Book Description
Recent Advances in Biosensor Technology (Volume 1) is a comprehensive guide to the latest developments in biosensor technology, written by experts in bioengineering and biosensor development. The book is an essential resource for researchers and biomedical engineers interested in the latest developments in biosensor technology. The volume covers the applications of biosensors in different fields. It features 9 chapters that cover key themes in this area, including biosensors for natural bioactive compounds, wearable biosensors in healthcare, 3D bioprinting and biosensors, biosensors for neurodegenerative diseases, protein biosensing and pathogen detection, biosensors for diabetes diagnosis, paper-based biosensors in diagnostics, enzymatic biosensors and their applications, and nanobiosensors in agriculture. One of the key features of this book is its detailed discussion of the novel research findings in biosensor technology, providing readers with the most up-to-date information in the field. Each chapter includes a comprehensive review of relevant literature, as well as practical examples to demonstrate the potential applications of biosensors in various fields. Furthermore, this book includes detailed references for further reading, making it an excellent resource for readers looking to deepen their understanding of biosensor technology.

Bioremediation and Biotechnology, Vol 3

Bioremediation and Biotechnology, Vol 3 PDF Author: Rouf Ahmad Bhat
Publisher: Springer Nature
ISBN: 3030460754
Category : Nature
Languages : en
Pages : 370

Get Book Here

Book Description
Healthy environment is important for any kind of biota on earth. It provides the basic elements of life such as clean water, fresh air, fertile soil and supports ecosystem of the food chain. Pollution drastically alters quality of the environment by changing the physico-chemical and biological aspects of these components. Accordingly, toxic metals, combustible and putrescible substances, hazardous wastes, explosives and petroleum products are all examples of inorganic and organic compounds that cause contaminations. Specifically, pollution of toxic and heavy metal in the environment is a growing problem worldwide, currently at an alarming rate. Toxic metals threaten the aquatic ecosystems, agriculture and ultimately human health. Traditional treatment techniques offer certain advantages such as rapid processing, ease of operation and control and flexibility. But, they could not maintain the quality of the environment due to the high operational costs of chemicals used, high energy consumption and handling costs for sludge disposal and overburden of chemical substances which irreversibly affect and destroy biodiversity, which ultimately render the soil useless as a medium for plant growth. Therefore, bioremediation and biotechnology, carried out by living assets to clean up, stabilize and restore contaminated ecosystems, have emerged as promising, environmental friendly and affordable approaches. Furthermore, the use of microbes, algae, transgenic plants and weeds adapted to stressful environments could be employed to enhance accumulation efficiency. Hence, sustainable and inexpensive processes are fast emerging as a viable alternative to conventional remediation methods, and will be most suitable for developing countries. In the current volume, we discuss pollution remediation challenges and how living organisms and the latest biotechnological techniques could be helpful in remediating the pollution in ecofriendly and sustainable ways.

Sustainable Material for Biomedical Engineering Application

Sustainable Material for Biomedical Engineering Application PDF Author: Wan Safwani Wan Kamarul Zaman
Publisher: Springer Nature
ISBN: 9819922674
Category : Technology & Engineering
Languages : en
Pages : 507

Get Book Here

Book Description
Sustainable Material for Biomedical Engineering Application discusses current interdisciplinary approaches in the development of materials and their derivatives that are sustainable for biomedical engineering application. Recent advancement of materials research has shown to have great impact on biomedical and clinical applications. With potential for sustainability, the materials discussed and illustrated in this book, may have the ability to increase and contribute to wider therapeutic options for patients. On the other hand, with the advancement in materials technology, they also have positive impacts in terms of reproducibility and more cost-effective manufacturing solutions for biomedical engineering industry. Some of the main aspects covered in this book are utilisation of human waste, food waste and green technology approach for materials in biomedical engineering applications such as tissue engineering, 3D printing and biosensing. A team of experts from various disciplines share recent advances that provide details and integrates different approaches to sustainable materials development. This book is intended for academicians, researchers, students and industrial players in the field of materials and biomedical engineering.