Author: Anne Auger
Publisher: World Scientific
ISBN: 9814282669
Category : Computers
Languages : en
Pages : 370
Book Description
This volume covers both classical results and the most recent theoretical developments in the field of randomized search heuristics such as runtime analysis, drift analysis and convergence.
Theory of Randomized Search Heuristics
Author: Anne Auger
Publisher: World Scientific
ISBN: 9814282669
Category : Computers
Languages : en
Pages : 370
Book Description
This volume covers both classical results and the most recent theoretical developments in the field of randomized search heuristics such as runtime analysis, drift analysis and convergence.
Publisher: World Scientific
ISBN: 9814282669
Category : Computers
Languages : en
Pages : 370
Book Description
This volume covers both classical results and the most recent theoretical developments in the field of randomized search heuristics such as runtime analysis, drift analysis and convergence.
Theory of Evolutionary Computation
Author: Benjamin Doerr
Publisher: Springer Nature
ISBN: 3030294145
Category : Computers
Languages : en
Pages : 527
Book Description
This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.
Publisher: Springer Nature
ISBN: 3030294145
Category : Computers
Languages : en
Pages : 527
Book Description
This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.
Mathematical Foundations of Computer Science 2003
Author: Branislav Rovan
Publisher: Springer Science & Business Media
ISBN: 3540406719
Category : Computers
Languages : en
Pages : 706
Book Description
This book constitutes the refereed proceedings of the 28th International Symposium on Mathematical Foundations of Computer Science, MFCS 2003, held in Bratislava, Slovakia in August 2003. The 55 revised full papers presented together with 7 invited papers were carefully reviewed and selected from 137 submissions. All current aspects in theoretical computer science are addressed, ranging from discrete mathematics, combinatorial optimization, graph theory, networking, algorithms, and complexity to programming theory, formal methods, and mathematical logic.
Publisher: Springer Science & Business Media
ISBN: 3540406719
Category : Computers
Languages : en
Pages : 706
Book Description
This book constitutes the refereed proceedings of the 28th International Symposium on Mathematical Foundations of Computer Science, MFCS 2003, held in Bratislava, Slovakia in August 2003. The 55 revised full papers presented together with 7 invited papers were carefully reviewed and selected from 137 submissions. All current aspects in theoretical computer science are addressed, ranging from discrete mathematics, combinatorial optimization, graph theory, networking, algorithms, and complexity to programming theory, formal methods, and mathematical logic.
Heuristic Search
Author: Stefan Edelkamp
Publisher: Elsevier
ISBN: 0080919731
Category : Computers
Languages : en
Pages : 865
Book Description
Search has been vital to artificial intelligence from the very beginning as a core technique in problem solving. The authors present a thorough overview of heuristic search with a balance of discussion between theoretical analysis and efficient implementation and application to real-world problems. Current developments in search such as pattern databases and search with efficient use of external memory and parallel processing units on main boards and graphics cards are detailed. Heuristic search as a problem solving tool is demonstrated in applications for puzzle solving, game playing, constraint satisfaction and machine learning. While no previous familiarity with heuristic search is necessary the reader should have a basic knowledge of algorithms, data structures, and calculus. Real-world case studies and chapter ending exercises help to create a full and realized picture of how search fits into the world of artificial intelligence and the one around us. - Provides real-world success stories and case studies for heuristic search algorithms - Includes many AI developments not yet covered in textbooks such as pattern databases, symbolic search, and parallel processing units
Publisher: Elsevier
ISBN: 0080919731
Category : Computers
Languages : en
Pages : 865
Book Description
Search has been vital to artificial intelligence from the very beginning as a core technique in problem solving. The authors present a thorough overview of heuristic search with a balance of discussion between theoretical analysis and efficient implementation and application to real-world problems. Current developments in search such as pattern databases and search with efficient use of external memory and parallel processing units on main boards and graphics cards are detailed. Heuristic search as a problem solving tool is demonstrated in applications for puzzle solving, game playing, constraint satisfaction and machine learning. While no previous familiarity with heuristic search is necessary the reader should have a basic knowledge of algorithms, data structures, and calculus. Real-world case studies and chapter ending exercises help to create a full and realized picture of how search fits into the world of artificial intelligence and the one around us. - Provides real-world success stories and case studies for heuristic search algorithms - Includes many AI developments not yet covered in textbooks such as pattern databases, symbolic search, and parallel processing units
Meta-Heuristics
Author: Ibrahim H. Osman
Publisher: Springer Science & Business Media
ISBN: 1461313619
Category : Business & Economics
Languages : en
Pages : 676
Book Description
Meta-heuristics have developed dramatically since their inception in the early 1980s. They have had widespread success in attacking a variety of practical and difficult combinatorial optimization problems. These families of approaches include, but are not limited to greedy random adaptive search procedures, genetic algorithms, problem-space search, neural networks, simulated annealing, tabu search, threshold algorithms, and their hybrids. They incorporate concepts based on biological evolution, intelligent problem solving, mathematical and physical sciences, nervous systems, and statistical mechanics. Since the 1980s, a great deal of effort has been invested in the field of combinatorial optimization theory in which heuristic algorithms have become an important area of research and applications. This volume is drawn from the first conference on Meta-Heuristics and contains 41 papers on the state-of-the-art in heuristic theory and applications. The book treats the following meta-heuristics and applications: Genetic Algorithms, Simulated Annealing, Tabu Search, Networks & Graphs, Scheduling and Control, TSP, and Vehicle Routing Problems. It represents research from the fields of Operations Research, Management Science, Artificial Intelligence and Computer Science.
Publisher: Springer Science & Business Media
ISBN: 1461313619
Category : Business & Economics
Languages : en
Pages : 676
Book Description
Meta-heuristics have developed dramatically since their inception in the early 1980s. They have had widespread success in attacking a variety of practical and difficult combinatorial optimization problems. These families of approaches include, but are not limited to greedy random adaptive search procedures, genetic algorithms, problem-space search, neural networks, simulated annealing, tabu search, threshold algorithms, and their hybrids. They incorporate concepts based on biological evolution, intelligent problem solving, mathematical and physical sciences, nervous systems, and statistical mechanics. Since the 1980s, a great deal of effort has been invested in the field of combinatorial optimization theory in which heuristic algorithms have become an important area of research and applications. This volume is drawn from the first conference on Meta-Heuristics and contains 41 papers on the state-of-the-art in heuristic theory and applications. The book treats the following meta-heuristics and applications: Genetic Algorithms, Simulated Annealing, Tabu Search, Networks & Graphs, Scheduling and Control, TSP, and Vehicle Routing Problems. It represents research from the fields of Operations Research, Management Science, Artificial Intelligence and Computer Science.
Genetic and Evolutionary Computation — GECCO 2004
Author: Kalyanmoy Deb
Publisher: Springer
ISBN: 3540248544
Category : Computers
Languages : en
Pages : 1490
Book Description
The two volume set LNCS 3102/3103 constitutes the refereed proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2004, held in Seattle, WA, USA, in June 2004. The 230 revised full papers and 104 poster papers presented were carefully reviewed and selected from 460 submissions. The papers are organized in topical sections on artificial life, adaptive behavior, agents, and ant colony optimization; artificial immune systems, biological applications; coevolution; evolutionary robotics; evolution strategies and evolutionary programming; evolvable hardware; genetic algorithms; genetic programming; learning classifier systems; real world applications; and search-based software engineering.
Publisher: Springer
ISBN: 3540248544
Category : Computers
Languages : en
Pages : 1490
Book Description
The two volume set LNCS 3102/3103 constitutes the refereed proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2004, held in Seattle, WA, USA, in June 2004. The 230 revised full papers and 104 poster papers presented were carefully reviewed and selected from 460 submissions. The papers are organized in topical sections on artificial life, adaptive behavior, agents, and ant colony optimization; artificial immune systems, biological applications; coevolution; evolutionary robotics; evolution strategies and evolutionary programming; evolvable hardware; genetic algorithms; genetic programming; learning classifier systems; real world applications; and search-based software engineering.
Theory and Principled Methods for the Design of Metaheuristics
Author: Yossi Borenstein
Publisher: Springer Science & Business Media
ISBN: 3642332064
Category : Computers
Languages : en
Pages : 287
Book Description
Metaheuristics, and evolutionary algorithms in particular, are known to provide efficient, adaptable solutions for many real-world problems, but the often informal way in which they are defined and applied has led to misconceptions, and even successful applications are sometimes the outcome of trial and error. Ideally, theoretical studies should explain when and why metaheuristics work, but the challenge is huge: mathematical analysis requires significant effort even for simple scenarios and real-life problems are usually quite complex. In this book the editors establish a bridge between theory and practice, presenting principled methods that incorporate problem knowledge in evolutionary algorithms and other metaheuristics. The book consists of 11 chapters dealing with the following topics: theoretical results that show what is not possible, an assessment of unsuccessful lines of empirical research; methods for rigorously defining the appropriate scope of problems while acknowledging the compromise between the class of problems to which a search algorithm is applied and its overall expected performance; the top-down principled design of search algorithms, in particular showing that it is possible to design algorithms that are provably good for some rigorously defined classes; and, finally, principled practice, that is reasoned and systematic approaches to setting up experiments, metaheuristic adaptation to specific problems, and setting parameters. With contributions by some of the leading researchers in this domain, this book will be of significant value to scientists, practitioners, and graduate students in the areas of evolutionary computing, metaheuristics, and computational intelligence.
Publisher: Springer Science & Business Media
ISBN: 3642332064
Category : Computers
Languages : en
Pages : 287
Book Description
Metaheuristics, and evolutionary algorithms in particular, are known to provide efficient, adaptable solutions for many real-world problems, but the often informal way in which they are defined and applied has led to misconceptions, and even successful applications are sometimes the outcome of trial and error. Ideally, theoretical studies should explain when and why metaheuristics work, but the challenge is huge: mathematical analysis requires significant effort even for simple scenarios and real-life problems are usually quite complex. In this book the editors establish a bridge between theory and practice, presenting principled methods that incorporate problem knowledge in evolutionary algorithms and other metaheuristics. The book consists of 11 chapters dealing with the following topics: theoretical results that show what is not possible, an assessment of unsuccessful lines of empirical research; methods for rigorously defining the appropriate scope of problems while acknowledging the compromise between the class of problems to which a search algorithm is applied and its overall expected performance; the top-down principled design of search algorithms, in particular showing that it is possible to design algorithms that are provably good for some rigorously defined classes; and, finally, principled practice, that is reasoned and systematic approaches to setting up experiments, metaheuristic adaptation to specific problems, and setting parameters. With contributions by some of the leading researchers in this domain, this book will be of significant value to scientists, practitioners, and graduate students in the areas of evolutionary computing, metaheuristics, and computational intelligence.
Lie Groups and Algebraic Groups
Author: Arkadij L. Onishchik
Publisher: Springer Science & Business Media
ISBN: 364274334X
Category : Mathematics
Languages : en
Pages : 347
Book Description
This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.
Publisher: Springer Science & Business Media
ISBN: 364274334X
Category : Mathematics
Languages : en
Pages : 347
Book Description
This book is based on the notes of the authors' seminar on algebraic and Lie groups held at the Department of Mechanics and Mathematics of Moscow University in 1967/68. Our guiding idea was to present in the most economic way the theory of semisimple Lie groups on the basis of the theory of algebraic groups. Our main sources were A. Borel's paper [34], C. ChevalIey's seminar [14], seminar "Sophus Lie" [15] and monographs by C. Chevalley [4], N. Jacobson [9] and J-P. Serre [16, 17]. In preparing this book we have completely rearranged these notes and added two new chapters: "Lie groups" and "Real semisimple Lie groups". Several traditional topics of Lie algebra theory, however, are left entirely disregarded, e.g. universal enveloping algebras, characters of linear representations and (co)homology of Lie algebras. A distinctive feature of this book is that almost all the material is presented as a sequence of problems, as it had been in the first draft of the seminar's notes. We believe that solving these problems may help the reader to feel the seminar's atmosphere and master the theory. Nevertheless, all the non-trivial ideas, and sometimes solutions, are contained in hints given at the end of each section. The proofs of certain theorems, which we consider more difficult, are given directly in the main text. The book also contains exercises, the majority of which are an essential complement to the main contents.
Optimization by GRASP
Author: Mauricio G.C. Resende
Publisher: Springer
ISBN: 1493965301
Category : Mathematics
Languages : en
Pages : 323
Book Description
This is the first book to cover GRASP (Greedy Randomized Adaptive Search Procedures), a metaheuristic that has enjoyed wide success in practice with a broad range of applications to real-world combinatorial optimization problems. The state-of-the-art coverage and carefully crafted pedagogical style lends this book highly accessible as an introductory text not only to GRASP, but also to combinatorial optimization, greedy algorithms, local search, and path-relinking, as well as to heuristics and metaheuristics, in general. The focus is on algorithmic and computational aspects of applied optimization with GRASP with emphasis given to the end-user, providing sufficient information on the broad spectrum of advances in applied optimization with GRASP. For the more advanced reader, chapters on hybridization with path-relinking and parallel and continuous GRASP present these topics in a clear and concise fashion. Additionally, the book offers a very complete annotated bibliography of GRASP and combinatorial optimization. For the practitioner who needs to solve combinatorial optimization problems, the book provides a chapter with four case studies and implementable templates for all algorithms covered in the text. This book, with its excellent overview of GRASP, will appeal to researchers and practitioners of combinatorial optimization who have a need to find optimal or near optimal solutions to hard combinatorial optimization problems.
Publisher: Springer
ISBN: 1493965301
Category : Mathematics
Languages : en
Pages : 323
Book Description
This is the first book to cover GRASP (Greedy Randomized Adaptive Search Procedures), a metaheuristic that has enjoyed wide success in practice with a broad range of applications to real-world combinatorial optimization problems. The state-of-the-art coverage and carefully crafted pedagogical style lends this book highly accessible as an introductory text not only to GRASP, but also to combinatorial optimization, greedy algorithms, local search, and path-relinking, as well as to heuristics and metaheuristics, in general. The focus is on algorithmic and computational aspects of applied optimization with GRASP with emphasis given to the end-user, providing sufficient information on the broad spectrum of advances in applied optimization with GRASP. For the more advanced reader, chapters on hybridization with path-relinking and parallel and continuous GRASP present these topics in a clear and concise fashion. Additionally, the book offers a very complete annotated bibliography of GRASP and combinatorial optimization. For the practitioner who needs to solve combinatorial optimization problems, the book provides a chapter with four case studies and implementable templates for all algorithms covered in the text. This book, with its excellent overview of GRASP, will appeal to researchers and practitioners of combinatorial optimization who have a need to find optimal or near optimal solutions to hard combinatorial optimization problems.
Automata, Languages and Programming
Author: Fernando Orejas
Publisher: Springer Science & Business Media
ISBN: 3540422870
Category : Computers
Languages : en
Pages : 1098
Book Description
This book constitutes the refereed proceedings of the 28th International Colloquium on Automata, Languages and Programming, ICALP 2001, held in Crete, Greece in July 2001. The 80 revised papers presented together with two keynote contributions and four invited papers were carefully reviewed and selected from a total of 208 submissions. The papers are organized in topical sections on algebraic and circuit complexity, algorithm analysis, approximation and optimization, complexity, concurrency, efficient data structures, graph algorithms, language theory, codes and automata, model checking and protocol analysis, networks and routing, reasoning and verification, scheduling, secure computation, specification and deduction, and structural complexity.
Publisher: Springer Science & Business Media
ISBN: 3540422870
Category : Computers
Languages : en
Pages : 1098
Book Description
This book constitutes the refereed proceedings of the 28th International Colloquium on Automata, Languages and Programming, ICALP 2001, held in Crete, Greece in July 2001. The 80 revised papers presented together with two keynote contributions and four invited papers were carefully reviewed and selected from a total of 208 submissions. The papers are organized in topical sections on algebraic and circuit complexity, algorithm analysis, approximation and optimization, complexity, concurrency, efficient data structures, graph algorithms, language theory, codes and automata, model checking and protocol analysis, networks and routing, reasoning and verification, scheduling, secure computation, specification and deduction, and structural complexity.