Author: Herbert Wang
Publisher: Princeton University Press
ISBN: 9780691037462
Category : Science
Languages : en
Pages : 316
Book Description
The theory of linear poroelasticity describes the interaction between mechanical effects and adding or removing fluid from rock. It is critical to the study of such geological phenomena as earthquakes and landslides and is important for numerous engineering projects, including dams, groundwater withdrawal, and petroleum extraction. Now an advanced text synthesizes in one place, with one notation, numerous classical solutions and applications of this highly useful theory. The introductory chapter recounts parallel developments in geomechanics, hydrogeology, and reservoir engineering that are unified by the tenets of poroelasticity. Next, the theory's constitutive and governing equations and their associated material parameters are described. These equations are then specialized for different simplifying geometries: unbounded problem domains, uniaxial strain, plane strain, radial symmetry, and axisymmetry. Example problems from geomechanics, hydrogeology, and petroleum engineering are incorporated throughout to illustrate poroelastic behavior and solution methods for a wide variety of real-world scenarios. The final chapter provides outlines for finite-element and boundary-element formulations of the field's governing equations. Whether read as a course of study or consulted as a reference by researchers and professionals, this volume's user-friendly presentation makes accessible one of geophysics' most important subjects and will do much to reduce poroelasticity's reputation as difficult to master.
Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology
Author: Herbert Wang
Publisher: Princeton University Press
ISBN: 9780691037462
Category : Science
Languages : en
Pages : 316
Book Description
The theory of linear poroelasticity describes the interaction between mechanical effects and adding or removing fluid from rock. It is critical to the study of such geological phenomena as earthquakes and landslides and is important for numerous engineering projects, including dams, groundwater withdrawal, and petroleum extraction. Now an advanced text synthesizes in one place, with one notation, numerous classical solutions and applications of this highly useful theory. The introductory chapter recounts parallel developments in geomechanics, hydrogeology, and reservoir engineering that are unified by the tenets of poroelasticity. Next, the theory's constitutive and governing equations and their associated material parameters are described. These equations are then specialized for different simplifying geometries: unbounded problem domains, uniaxial strain, plane strain, radial symmetry, and axisymmetry. Example problems from geomechanics, hydrogeology, and petroleum engineering are incorporated throughout to illustrate poroelastic behavior and solution methods for a wide variety of real-world scenarios. The final chapter provides outlines for finite-element and boundary-element formulations of the field's governing equations. Whether read as a course of study or consulted as a reference by researchers and professionals, this volume's user-friendly presentation makes accessible one of geophysics' most important subjects and will do much to reduce poroelasticity's reputation as difficult to master.
Publisher: Princeton University Press
ISBN: 9780691037462
Category : Science
Languages : en
Pages : 316
Book Description
The theory of linear poroelasticity describes the interaction between mechanical effects and adding or removing fluid from rock. It is critical to the study of such geological phenomena as earthquakes and landslides and is important for numerous engineering projects, including dams, groundwater withdrawal, and petroleum extraction. Now an advanced text synthesizes in one place, with one notation, numerous classical solutions and applications of this highly useful theory. The introductory chapter recounts parallel developments in geomechanics, hydrogeology, and reservoir engineering that are unified by the tenets of poroelasticity. Next, the theory's constitutive and governing equations and their associated material parameters are described. These equations are then specialized for different simplifying geometries: unbounded problem domains, uniaxial strain, plane strain, radial symmetry, and axisymmetry. Example problems from geomechanics, hydrogeology, and petroleum engineering are incorporated throughout to illustrate poroelastic behavior and solution methods for a wide variety of real-world scenarios. The final chapter provides outlines for finite-element and boundary-element formulations of the field's governing equations. Whether read as a course of study or consulted as a reference by researchers and professionals, this volume's user-friendly presentation makes accessible one of geophysics' most important subjects and will do much to reduce poroelasticity's reputation as difficult to master.
Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology
Author: Herbert F. Wang
Publisher: Princeton University Press
ISBN: 140088568X
Category : Science
Languages : en
Pages : 301
Book Description
The theory of linear poroelasticity describes the interaction between mechanical effects and adding or removing fluid from rock. It is critical to the study of such geological phenomena as earthquakes and landslides and is important for numerous engineering projects, including dams, groundwater withdrawal, and petroleum extraction. Now an advanced text synthesizes in one place, with one notation, numerous classical solutions and applications of this highly useful theory. The introductory chapter recounts parallel developments in geomechanics, hydrogeology, and reservoir engineering that are unified by the tenets of poroelasticity. Next, the theory's constitutive and governing equations and their associated material parameters are described. These equations are then specialized for different simplifying geometries: unbounded problem domains, uniaxial strain, plane strain, radial symmetry, and axisymmetry. Example problems from geomechanics, hydrogeology, and petroleum engineering are incorporated throughout to illustrate poroelastic behavior and solution methods for a wide variety of real-world scenarios. The final chapter provides outlines for finite-element and boundary-element formulations of the field's governing equations. Whether read as a course of study or consulted as a reference by researchers and professionals, this volume's user-friendly presentation makes accessible one of geophysics' most important subjects and will do much to reduce poroelasticity's reputation as difficult to master.
Publisher: Princeton University Press
ISBN: 140088568X
Category : Science
Languages : en
Pages : 301
Book Description
The theory of linear poroelasticity describes the interaction between mechanical effects and adding or removing fluid from rock. It is critical to the study of such geological phenomena as earthquakes and landslides and is important for numerous engineering projects, including dams, groundwater withdrawal, and petroleum extraction. Now an advanced text synthesizes in one place, with one notation, numerous classical solutions and applications of this highly useful theory. The introductory chapter recounts parallel developments in geomechanics, hydrogeology, and reservoir engineering that are unified by the tenets of poroelasticity. Next, the theory's constitutive and governing equations and their associated material parameters are described. These equations are then specialized for different simplifying geometries: unbounded problem domains, uniaxial strain, plane strain, radial symmetry, and axisymmetry. Example problems from geomechanics, hydrogeology, and petroleum engineering are incorporated throughout to illustrate poroelastic behavior and solution methods for a wide variety of real-world scenarios. The final chapter provides outlines for finite-element and boundary-element formulations of the field's governing equations. Whether read as a course of study or consulted as a reference by researchers and professionals, this volume's user-friendly presentation makes accessible one of geophysics' most important subjects and will do much to reduce poroelasticity's reputation as difficult to master.
Thermo-Poroelasticity and Geomechanics
Author: A. P. S. Selvadurai
Publisher: Cambridge University Press
ISBN: 1108107907
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
Investigations of multi-physical processes in geomaterials have gained increasing attention due to the ongoing interest in solving complex geoenvironmental problems. This book provides a comprehensive exposition of the classical theory of thermo-poroelasticity, complemented by complete examples to problems in thermo-poromechanics that are used to validate computational results from multi-physics codes used in practice. The methodologies offer an insight into real-life problems related to modern environmental geosciences, including nuclear waste management, geologic sequestration of greenhouse gases to mitigate climate change, and the impact of energy resources recovery on groundwater resources. A strong focus is placed on analytical approaches to benchmark the accuracy of the computational approaches that are ultimately used in real-life problems. The extensive coverage of both theory and applications in thermo-poroelasticity and geomechanics provides a unified presentation of the topics, making this an accessible and invaluable resource for researchers, students or practitioners in the field.
Publisher: Cambridge University Press
ISBN: 1108107907
Category : Technology & Engineering
Languages : en
Pages : 269
Book Description
Investigations of multi-physical processes in geomaterials have gained increasing attention due to the ongoing interest in solving complex geoenvironmental problems. This book provides a comprehensive exposition of the classical theory of thermo-poroelasticity, complemented by complete examples to problems in thermo-poromechanics that are used to validate computational results from multi-physics codes used in practice. The methodologies offer an insight into real-life problems related to modern environmental geosciences, including nuclear waste management, geologic sequestration of greenhouse gases to mitigate climate change, and the impact of energy resources recovery on groundwater resources. A strong focus is placed on analytical approaches to benchmark the accuracy of the computational approaches that are ultimately used in real-life problems. The extensive coverage of both theory and applications in thermo-poroelasticity and geomechanics provides a unified presentation of the topics, making this an accessible and invaluable resource for researchers, students or practitioners in the field.
Finite Difference Methods,Theory and Applications
Author: Ivan Dimov
Publisher: Springer
ISBN: 3319202391
Category : Computers
Languages : en
Pages : 443
Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Finite Difference Methods, FDM 2014, held in Lozenetz, Bulgaria, in June 2014. The 36 revised full papers were carefully reviewed and selected from 62 submissions. These papers together with 12 invited papers cover topics such as finite difference and combined finite difference methods as well as finite element methods and their various applications in physics, chemistry, biology and finance.
Publisher: Springer
ISBN: 3319202391
Category : Computers
Languages : en
Pages : 443
Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Finite Difference Methods, FDM 2014, held in Lozenetz, Bulgaria, in June 2014. The 36 revised full papers were carefully reviewed and selected from 62 submissions. These papers together with 12 invited papers cover topics such as finite difference and combined finite difference methods as well as finite element methods and their various applications in physics, chemistry, biology and finance.
Fractional Calculus for Hydrology, Soil Science and Geomechanics
Author: Ninghu Su
Publisher: CRC Press
ISBN: 1351032410
Category : Science
Languages : en
Pages : 340
Book Description
This book is an unique integrated treatise, on the concepts of fractional calculus as models with applications in hydrology, soil science and geomechanics. The models are primarily fractional partial differential equations (fPDEs), and in limited cases, fractional differential equations (fDEs). It develops and applies relevant fPDEs and fDEs mainly to water flow and solute transport in porous media and overland, and in some cases, to concurrent flow and energy transfer. It is an integrated resource with theory and applications for those interested in hydrology, hydraulics and fluid mechanics. The self-contained book summaries the fundamentals for porous media and essential mathematics with extensive references supporting the development of the model and applications.
Publisher: CRC Press
ISBN: 1351032410
Category : Science
Languages : en
Pages : 340
Book Description
This book is an unique integrated treatise, on the concepts of fractional calculus as models with applications in hydrology, soil science and geomechanics. The models are primarily fractional partial differential equations (fPDEs), and in limited cases, fractional differential equations (fDEs). It develops and applies relevant fPDEs and fDEs mainly to water flow and solute transport in porous media and overland, and in some cases, to concurrent flow and energy transfer. It is an integrated resource with theory and applications for those interested in hydrology, hydraulics and fluid mechanics. The self-contained book summaries the fundamentals for porous media and essential mathematics with extensive references supporting the development of the model and applications.
A Method of Fundamental Solutions in Poroelasticity to Model the Stress Field in Geothermal Reservoirs
Author: Matthias Albert Augustin
Publisher: Birkhäuser
ISBN: 3319170791
Category : Mathematics
Languages : en
Pages : 245
Book Description
This monograph focuses on the numerical methods needed in the context of developing a reliable simulation tool to promote the use of renewable energy. One very promising source of energy is the heat stored in the Earth’s crust, which is harnessed by so-called geothermal facilities. Scientists from fields like geology, geo-engineering, geophysics and especially geomathematics are called upon to help make geothermics a reliable and safe energy production method. One of the challenges they face involves modeling the mechanical stresses at work in a reservoir. The aim of this thesis is to develop a numerical solution scheme by means of which the fluid pressure and rock stresses in a geothermal reservoir can be determined prior to well drilling and during production. For this purpose, the method should (i) include poroelastic effects, (ii) provide a means of including thermoelastic effects, (iii) be inexpensive in terms of memory and computational power, and (iv) be flexible with regard to the locations of data points. After introducing the basic equations and their relations to more familiar ones (the heat equation, Stokes equations, Cauchy-Navier equation), the “method of fundamental solutions” and its potential value concerning our task are discussed. Based on the properties of the fundamental solutions, theoretical results are established and numerical examples of stress field simulations are presented to assess the method’s performance. The first-ever 3D graphics calculated for these topics, which neither requiring meshing of the domain nor involving a time-stepping scheme, make this a pioneering volume.
Publisher: Birkhäuser
ISBN: 3319170791
Category : Mathematics
Languages : en
Pages : 245
Book Description
This monograph focuses on the numerical methods needed in the context of developing a reliable simulation tool to promote the use of renewable energy. One very promising source of energy is the heat stored in the Earth’s crust, which is harnessed by so-called geothermal facilities. Scientists from fields like geology, geo-engineering, geophysics and especially geomathematics are called upon to help make geothermics a reliable and safe energy production method. One of the challenges they face involves modeling the mechanical stresses at work in a reservoir. The aim of this thesis is to develop a numerical solution scheme by means of which the fluid pressure and rock stresses in a geothermal reservoir can be determined prior to well drilling and during production. For this purpose, the method should (i) include poroelastic effects, (ii) provide a means of including thermoelastic effects, (iii) be inexpensive in terms of memory and computational power, and (iv) be flexible with regard to the locations of data points. After introducing the basic equations and their relations to more familiar ones (the heat equation, Stokes equations, Cauchy-Navier equation), the “method of fundamental solutions” and its potential value concerning our task are discussed. Based on the properties of the fundamental solutions, theoretical results are established and numerical examples of stress field simulations are presented to assess the method’s performance. The first-ever 3D graphics calculated for these topics, which neither requiring meshing of the domain nor involving a time-stepping scheme, make this a pioneering volume.
Mechanics of Fluid-Saturated Rocks
Author: Yves Gueguen
Publisher: Elsevier
ISBN: 0080479367
Category : Science
Languages : en
Pages : 465
Book Description
Mechanics of Fluid Saturated Rocks presents a current and comprehensive report on this emerging field that bridges the areas of geology and mechanics. It is of direct interest to a wide spectrum of earth scientists and engineers who are concerned with upper-crust mechanics and fluid movements, the most important fluids being oil and water. This authoritative book is the result of a collaborative effort between scientists in academic institutions and industry. It examines important issues such as subsidence, geological fault formation, earthquake faulting, hydraulic fracturing, transport of fluids, and natural and direct applications. Mechanics of Fluid Saturated Rocks provides a unique interdisciplinary viewpoint, as well as case studies, conclusions, and recommendations for further research. - Covers the physical, chemical, and mechanical analysis of porous saturated rock deformation on both large and small scales - Discusses the latest developments of importance to engineers and geologists - Examines natural and direct applications - Includes extensive bibliographies for each chapter
Publisher: Elsevier
ISBN: 0080479367
Category : Science
Languages : en
Pages : 465
Book Description
Mechanics of Fluid Saturated Rocks presents a current and comprehensive report on this emerging field that bridges the areas of geology and mechanics. It is of direct interest to a wide spectrum of earth scientists and engineers who are concerned with upper-crust mechanics and fluid movements, the most important fluids being oil and water. This authoritative book is the result of a collaborative effort between scientists in academic institutions and industry. It examines important issues such as subsidence, geological fault formation, earthquake faulting, hydraulic fracturing, transport of fluids, and natural and direct applications. Mechanics of Fluid Saturated Rocks provides a unique interdisciplinary viewpoint, as well as case studies, conclusions, and recommendations for further research. - Covers the physical, chemical, and mechanical analysis of porous saturated rock deformation on both large and small scales - Discusses the latest developments of importance to engineers and geologists - Examines natural and direct applications - Includes extensive bibliographies for each chapter
Geotechnical and Environmental Applications of Karst Geology and Hydrology
Author: B.F. Beck
Publisher: CRC Press
ISBN: 9789058091901
Category : Science
Languages : en
Pages : 460
Book Description
This text covers topics such as sinkhole formation and regional studies of sinkholes and karst. Issues addressed are taken from the 8th multidiscilinary conference on this subject and chart the characteristics of sinkholes and karst as well as their environmental repercussions.
Publisher: CRC Press
ISBN: 9789058091901
Category : Science
Languages : en
Pages : 460
Book Description
This text covers topics such as sinkhole formation and regional studies of sinkholes and karst. Issues addressed are taken from the 8th multidiscilinary conference on this subject and chart the characteristics of sinkholes and karst as well as their environmental repercussions.
Potential Method in Mathematical Theories of Multi-Porosity Media
Author: Merab Svanadze
Publisher: Springer Nature
ISBN: 3030280225
Category : Mathematics
Languages : en
Pages : 313
Book Description
This monograph explores the application of the potential method to three-dimensional problems of the mathematical theories of elasticity and thermoelasticity for multi-porosity materials. These models offer several new possibilities for the study of important problems in engineering and mechanics involving multi-porosity materials, including geological materials (e.g., oil, gas, and geothermal reservoirs); manufactured porous materials (e.g., ceramics and pressed powders); and biomaterials (e.g., bone and the human brain). Proceeding from basic to more advanced material, the first part of the book begins with fundamental solutions in elasticity, followed by Galerkin-type solutions and Green’s formulae in elasticity and problems of steady vibrations, quasi-static, and pseudo-oscillations for multi-porosity materials. The next part follows a similar format for thermoelasticity, concluding with a chapter on problems of heat conduction for rigid bodies. The final chapter then presents a number of open research problems to which the results presented here can be applied. All results discussed by the author have not been published previously and offer new insights into these models. Potential Method in Mathematical Theories of Multi-Porosity Media will be a valuable resource for applied mathematicians, mechanical, civil, and aerospace engineers, and researchers studying continuum mechanics. Readers should be knowledgeable in classical theories of elasticity and thermoelasticity.
Publisher: Springer Nature
ISBN: 3030280225
Category : Mathematics
Languages : en
Pages : 313
Book Description
This monograph explores the application of the potential method to three-dimensional problems of the mathematical theories of elasticity and thermoelasticity for multi-porosity materials. These models offer several new possibilities for the study of important problems in engineering and mechanics involving multi-porosity materials, including geological materials (e.g., oil, gas, and geothermal reservoirs); manufactured porous materials (e.g., ceramics and pressed powders); and biomaterials (e.g., bone and the human brain). Proceeding from basic to more advanced material, the first part of the book begins with fundamental solutions in elasticity, followed by Galerkin-type solutions and Green’s formulae in elasticity and problems of steady vibrations, quasi-static, and pseudo-oscillations for multi-porosity materials. The next part follows a similar format for thermoelasticity, concluding with a chapter on problems of heat conduction for rigid bodies. The final chapter then presents a number of open research problems to which the results presented here can be applied. All results discussed by the author have not been published previously and offer new insights into these models. Potential Method in Mathematical Theories of Multi-Porosity Media will be a valuable resource for applied mathematicians, mechanical, civil, and aerospace engineers, and researchers studying continuum mechanics. Readers should be knowledgeable in classical theories of elasticity and thermoelasticity.
Continuum Thermodynamics - Part Ii: Applications And Examples
Author: Krzysztof Wilmanski
Publisher: World Scientific
ISBN: 9814412392
Category : Science
Languages : en
Pages : 482
Book Description
This second part of Continuum Thermodynamics is designed to match almost one-to-one the chapters of Part I. This is done so that the reader studying thermodynamics will have a deepened understanding of the subjects covered in Part I. The aims of the book are in particular: the illustration of basic features of some simple thermodynamical models such as ideal and viscous fluids, non-Newtonian fluids, nonlinear solids, interactions with electromagnetic fields, and diffusive porous materials. A further aim is the illustration of the above subjects by examples and simple solutions of initial and boundary problems as well as simple exercises to develop skills in the construction of interdisciplinary macroscopic models.
Publisher: World Scientific
ISBN: 9814412392
Category : Science
Languages : en
Pages : 482
Book Description
This second part of Continuum Thermodynamics is designed to match almost one-to-one the chapters of Part I. This is done so that the reader studying thermodynamics will have a deepened understanding of the subjects covered in Part I. The aims of the book are in particular: the illustration of basic features of some simple thermodynamical models such as ideal and viscous fluids, non-Newtonian fluids, nonlinear solids, interactions with electromagnetic fields, and diffusive porous materials. A further aim is the illustration of the above subjects by examples and simple solutions of initial and boundary problems as well as simple exercises to develop skills in the construction of interdisciplinary macroscopic models.