Spin Current

Spin Current PDF Author: Sadamichi Maekawa
Publisher: Oxford University Press
ISBN: 0198787073
Category : Science
Languages : en
Pages : 541

Get Book Here

Book Description
In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.

Spin Current

Spin Current PDF Author: Sadamichi Maekawa
Publisher: Oxford University Press
ISBN: 0198787073
Category : Science
Languages : en
Pages : 541

Get Book Here

Book Description
In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.

Semiconductor Spintronics

Semiconductor Spintronics PDF Author: Thomas Schäpers
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110639009
Category : Science
Languages : en
Pages : 428

Get Book Here

Book Description
This revised and expanded edition of the first comprehensive introduction to the rapidly-evolving field of spintronics covers ferromagnetism in nano-electrodes, spin injection, spin manipulation, and the practical use of these effects in next-generation electronics. Moreover, the book now also includes spin-based optics, topological materials and insulators, and the quantum spin Hall effect.

2D Materials

2D Materials PDF Author: Phaedon Avouris
Publisher: Cambridge University Press
ISBN: 1316738132
Category : Technology & Engineering
Languages : en
Pages : 521

Get Book Here

Book Description
Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Defects in Two-Dimensional Materials

Defects in Two-Dimensional Materials PDF Author: Rafik Addou
Publisher: Elsevier
ISBN: 032390310X
Category : Technology & Engineering
Languages : en
Pages : 434

Get Book Here

Book Description
Defects in Two-Dimensional Materials addresses the fundamental physics and chemistry of defects in 2D materials and their effects on physical, electrical and optical properties. The book explores 2D materials such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMD). This knowledge will enable scientists and engineers to tune 2D materials properties to meet specific application requirements. The book reviews the techniques to characterize 2D material defects and compares the defects present in the various 2D materials (e.g. graphene, h-BN, TMDs, phosphorene, silicene, etc.). As two-dimensional materials research and development is a fast-growing field that could lead to many industrial applications, the primary objective of this book is to review, discuss and present opportunities in controlling defects in these materials to improve device performance in general or use the defects in a controlled way for novel applications. Presents the theory, physics and chemistry of 2D materials Catalogues defects of 2D materials and their impacts on materials properties and performance Reviews methods to characterize, control and engineer defects in 2D materials

Modern Magnetic Materials

Modern Magnetic Materials PDF Author: Robert C. O'Handley
Publisher: Wiley-Interscience
ISBN: 9780471155669
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
A truly modern treatment of materials that can hold a magnetic field. * Covers cutting-edge materials with many important technical applications. * Includes examples and problems along with computer solutions.

2D Monoelemental Materials (Xenes) and Related Technologies

2D Monoelemental Materials (Xenes) and Related Technologies PDF Author: Zongyu Huang
Publisher: CRC Press
ISBN: 1000562840
Category : Science
Languages : en
Pages : 166

Get Book Here

Book Description
Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.

Introduction to the Theory of Ferromagnetism

Introduction to the Theory of Ferromagnetism PDF Author: Amikam Aharoni
Publisher: Clarendon Press
ISBN: 9780198508083
Category : Science
Languages : en
Pages : 344

Get Book Here

Book Description
The present book is the second edition of Amikam Aharoni's Introduction to the Theory of Ferromagnetism, based on a popular lecture course. Like its predecessor, it serves a two-fold purpose: First, it is a textbook for first-year graduate and advanced undergraduate students in both physics and engineering. Second, it explains the basic theoretical principles on which the work is based for practising engineers and experimental physicists who work in the field of magnetism, thus also serving to a certain extent as a reference book. For both professionals and students the emphasis is on introducing the foundations of the different subfields, highlighting the direction and tendency of the most recent research. For this new edition, the author has thoroughly updated the material especially of chapters 9 ('The Nucleation Problem') and 11 ('Numerical Micromagnetics'), which now contain the state of the art required by students and professionals who work on advanced topics of ferromagnetism. From reviews on the 1/e: '... a much needed, thorough introduction and guide to the literature. It is full of wisdom and commentary. Even more, it is Amikam Aharoni at his best - telling a story... He is fun to read... The extensive references provide an advanced review of micromagnetics and supply sources for suitable exercises... there is much for the student to do with the guidance provided by Introduction to the Theory of Ferromagnetism.' A. Arrott, Physics Today, September 1997

Two-Dimensional Transition-Metal Dichalcogenides

Two-Dimensional Transition-Metal Dichalcogenides PDF Author: Alexander V. Kolobov
Publisher: Springer
ISBN: 3319314505
Category : Technology & Engineering
Languages : en
Pages : 545

Get Book Here

Book Description
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

Chemical Vapor Transport Reactions

Chemical Vapor Transport Reactions PDF Author: Michael Binnewies
Publisher: Walter de Gruyter
ISBN: 3110254654
Category : Science
Languages : en
Pages : 644

Get Book Here

Book Description
This comprehensive handbook covers the diverse aspects of chemical vapor transport reactions from basic research to important practical applications. The book begins with an overview of models for chemical vapor transport reactions and then proceeds to treat the specific chemical transport reactions for the elements, halides, oxides, sulfides, selenides, tellurides, pnictides, among others. Aspects of transport from intermetallic phases, the stability of gas particles, thermodynamic data, modeling software and laboratory techniques are also covered. Selected experiments using chemical vapor transport reactions round out the work, making this book a useful reference for researchers and instructors in solid state and inorganic chemistry.

Strain Effect in Semiconductors

Strain Effect in Semiconductors PDF Author: Yongke Sun
Publisher: Springer Science & Business Media
ISBN: 1441905529
Category : Technology & Engineering
Languages : en
Pages : 353

Get Book Here

Book Description
Strain Effect in Semiconductors: Theory and Device Applications presents the fundamentals and applications of strain in semiconductors and semiconductor devices that is relevant for strain-enhanced advanced CMOS technology and strain-based piezoresistive MEMS transducers. Discusses relevant applications of strain while also focusing on the fundamental physics pertaining to bulk, planar, and scaled nano-devices. Hence, this book is relevant for current strained Si logic technology as well as for understanding the physics and scaling for future strained nano-scale devices.