Theory and Computation of Electromagnetic Fields in Layered Media

Theory and Computation of Electromagnetic Fields in Layered Media PDF Author: Vladimir Okhmatovski
Publisher: John Wiley & Sons
ISBN: 1119763193
Category : Science
Languages : en
Pages : 756

Get Book Here

Book Description
Explore the algorithms and numerical methods used to compute electromagnetic fields in multi-layered media In Theory and Computation of Electromagnetic Fields in Layered Media, two distinguished electrical engineering researchers deliver a detailed and up-to-date overview of the theory and numerical methods used to determine electromagnetic fields in layered media. The book begins with an introduction to Maxwell’s equations, the fundamentals of electromagnetic theory, and concepts and definitions relating to Green’s function. It then moves on to solve canonical problems in vertical and horizontal dipole radiation, describe Method of Moments schemes, discuss integral equations governing electromagnetic fields, and explains the Michalski-Zheng theory of mixed-potential Green’s function representation in multi-layered media. Chapters on the evaluation of Sommerfeld integrals, procedures for far field evaluation, and the theory and application of hierarchical matrices are also included, along with: A thorough introduction to free-space Green’s functions, including the delta-function model for point charge and dipole current Comprehensive explorations of the traditional form of layered medium Green’s function in three dimensions Practical discussions of electro-quasi-static and magneto-quasi-static fields in layered media, including electrostatic fields in two and three dimensions In-depth examinations of the rational function fitting method, including direct spectra fitting with VECTFIT algorithms Perfect for scholars and students of electromagnetic analysis in layered media, Theory and Computation of Electromagnetic Fields in Layered Media will also earn a place in the libraries of CAD industry engineers and software developers working in the area of computational electromagnetics.

Theory and Computation of Electromagnetic Fields in Layered Media

Theory and Computation of Electromagnetic Fields in Layered Media PDF Author: Vladimir Okhmatovski
Publisher: John Wiley & Sons
ISBN: 1119763193
Category : Science
Languages : en
Pages : 756

Get Book Here

Book Description
Explore the algorithms and numerical methods used to compute electromagnetic fields in multi-layered media In Theory and Computation of Electromagnetic Fields in Layered Media, two distinguished electrical engineering researchers deliver a detailed and up-to-date overview of the theory and numerical methods used to determine electromagnetic fields in layered media. The book begins with an introduction to Maxwell’s equations, the fundamentals of electromagnetic theory, and concepts and definitions relating to Green’s function. It then moves on to solve canonical problems in vertical and horizontal dipole radiation, describe Method of Moments schemes, discuss integral equations governing electromagnetic fields, and explains the Michalski-Zheng theory of mixed-potential Green’s function representation in multi-layered media. Chapters on the evaluation of Sommerfeld integrals, procedures for far field evaluation, and the theory and application of hierarchical matrices are also included, along with: A thorough introduction to free-space Green’s functions, including the delta-function model for point charge and dipole current Comprehensive explorations of the traditional form of layered medium Green’s function in three dimensions Practical discussions of electro-quasi-static and magneto-quasi-static fields in layered media, including electrostatic fields in two and three dimensions In-depth examinations of the rational function fitting method, including direct spectra fitting with VECTFIT algorithms Perfect for scholars and students of electromagnetic analysis in layered media, Theory and Computation of Electromagnetic Fields in Layered Media will also earn a place in the libraries of CAD industry engineers and software developers working in the area of computational electromagnetics.

Theory and Computation of Electromagnetic Fields

Theory and Computation of Electromagnetic Fields PDF Author: Jian-Ming Jin
Publisher: John Wiley & Sons
ISBN: 111910808X
Category : Science
Languages : en
Pages : 744

Get Book Here

Book Description
Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Theory and Computation of Electromagnetic Fields in Layered Media

Theory and Computation of Electromagnetic Fields in Layered Media PDF Author: Vladimir Okhmatovski
Publisher: John Wiley & Sons
ISBN: 1119763215
Category : Science
Languages : en
Pages : 756

Get Book Here

Book Description
Explore the algorithms and numerical methods used to compute electromagnetic fields in multi-layered media In Theory and Computation of Electromagnetic Fields in Layered Media, two distinguished electrical engineering researchers deliver a detailed and up-to-date overview of the theory and numerical methods used to determine electromagnetic fields in layered media. The book begins with an introduction to Maxwell’s equations, the fundamentals of electromagnetic theory, and concepts and definitions relating to Green’s function. It then moves on to solve canonical problems in vertical and horizontal dipole radiation, describe Method of Moments schemes, discuss integral equations governing electromagnetic fields, and explains the Michalski-Zheng theory of mixed-potential Green’s function representation in multi-layered media. Chapters on the evaluation of Sommerfeld integrals, procedures for far field evaluation, and the theory and application of hierarchical matrices are also included, along with: A thorough introduction to free-space Green’s functions, including the delta-function model for point charge and dipole current Comprehensive explorations of the traditional form of layered medium Green’s function in three dimensions Practical discussions of electro-quasi-static and magneto-quasi-static fields in layered media, including electrostatic fields in two and three dimensions In-depth examinations of the rational function fitting method, including direct spectra fitting with VECTFIT algorithms Perfect for scholars and students of electromagnetic analysis in layered media, Theory and Computation of Electromagnetic Fields in Layered Media will also earn a place in the libraries of CAD industry engineers and software developers working in the area of computational electromagnetics.

Theory and Computation of Electromagnetic Fields

Theory and Computation of Electromagnetic Fields PDF Author: Jian-Ming Jin
Publisher: John Wiley & Sons
ISBN: 1119108047
Category : Science
Languages : en
Pages : 756

Get Book Here

Book Description
Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Lateral Electromagnetic Waves

Lateral Electromagnetic Waves PDF Author: Ronold W.P. King
Publisher: Springer Science & Business Media
ISBN: 1461391741
Category : Technology & Engineering
Languages : en
Pages : 771

Get Book Here

Book Description
The propagation of waves along and across the boundary between two media with different characteristic velocities is much more complicated when the source is on or near the boundary than when it is far away and the incident waves are plane. Examples of waves generated by localized sources near a boundary are the electromagnetic waves from the currents in a dipole on the surface of the earth and the seismic waves from a slip event in a fault in the earth's crust like the San Andreas fault in California. Both involve a type of surface wave that is called a lateral wave in electro magnetics and a head wave in seismology. Since the two are analogous and the latter is more easily visualized, it is conveniently used here to introduce and describe this important type of surface wave using the data of Y. Ben Zion and P. Malin ("San Andreas Fault Zone Head Waves Near Parkfield, CA," Science 251, 1592-1594, 29 March 1991).

Spheroidal Wave Functions in Electromagnetic Theory

Spheroidal Wave Functions in Electromagnetic Theory PDF Author: Le-Wei Li
Publisher: John Wiley & Sons
ISBN: 047146418X
Category : Science
Languages : en
Pages : 315

Get Book Here

Book Description
The flagship monograph addressing the spheroidal wave function and its pertinence to computational electromagnetics Spheroidal Wave Functions in Electromagnetic Theory presents in detail the theory of spheroidal wave functions, its applications to the analysis of electromagnetic fields in various spheroidal structures, and provides comprehensive programming codes for those computations. The topics covered in this monograph include: Spheroidal coordinates and wave functions Dyadic Green's functions in spheroidal systems EM scattering by a conducting spheroid EM scattering by a coated dielectric spheroid Spheroid antennas SAR distributions in a spheroidal head model The programming codes and their applications are provided online and are written in Mathematica 3.0 or 4.0. Readers can also develop their own codes according to the theory or routine described in the book to find subsequent solutions of complicated structures. Spheroidal Wave Functions in Electromagnetic Theory is a fundamental reference for scientists, engineers, and graduate students practicing modern computational electromagnetics or applied physics.

Electromagnetic Fields in Stratified Media

Electromagnetic Fields in Stratified Media PDF Author: Kai Li
Publisher: Springer
ISBN: 9783540959632
Category : Technology & Engineering
Languages : en
Pages : 224

Get Book Here

Book Description
"Electromagnetic Fields in Stratified Media" deals with an important branch of electromagnetic theory, which has many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics. The book introduces to the electromagnetic theory and wave propagation in complex media, while presenting detailed models for various media: 3, 4, N-layered media, boundary conditions, and anisotropic media. In particular, the complete solutions for a trapped surface wave and lateral wave in a three- or four-layered region, the complete solutions for low frequency wave propagation over a spherical surface coated with a dielectric layer, and the transient field of a horizontal dipole in the boundary layer of two different media are presented. The book is designed for the scientists and engineers engaged in antennas and propagation, EM theory and applications. Dr. Kai Li is Professor at Zhejiang University.

Pulsed Electromagnetic Fields: Their Potentialities, Computation and Evaluation

Pulsed Electromagnetic Fields: Their Potentialities, Computation and Evaluation PDF Author: I.E. lager
Publisher: IOS Press
ISBN: 1614992304
Category : Science
Languages : en
Pages : 149

Get Book Here

Book Description
This book contains the contributions to the workshop Pulsed Electromagnetic Fields: Their Potentialities, Computation and Evaluation. The papers included in this volume cover a very broad range, from the physical and mathematical foundations up to operational systems making use of the potentialities arising from the use of pulsed electromagnetic fields. In particular, this volume offers a valuable overview of state-of-the-art approaches in the computational modeling of pulsed electromagnetic fields in configurations that are representative for road mapping future developments.

Electromagnetic Scattering

Electromagnetic Scattering PDF Author: Piergiorgio Uslenghi
Publisher: Elsevier
ISBN: 0323142435
Category : Science
Languages : en
Pages : 812

Get Book Here

Book Description
Electromagnetic Scattering is a collection of studies that aims to discuss methods, state of the art, applications, and future research in electromagnetic scattering. The book covers topics related to the subject, which includes low-frequency electromagnetic scattering; the uniform asymptomatic theory of electromagnetic edge diffraction; analyses of problems involving high frequency diffraction and imperfect half planes; and multiple scattering of waves by periodic and random distribution. Also covered in this book are topics such as theories of scattering from wire grid and mesh structures; the electromagnetic inverse problem; computational methods for transmission of waves; and developments in the use of complex singularities in the electromagnetic theory. Engineers and physicists who are interested in the study, developments, and applications of electromagnetic scattering will find the text informative and helpful.

Advanced Engineering Electromagnetics

Advanced Engineering Electromagnetics PDF Author: Constantine A. Balanis
Publisher: John Wiley & Sons
ISBN: 0470589485
Category : Science
Languages : en
Pages : 1040

Get Book Here

Book Description
Balanis’ second edition of Advanced Engineering Electromagnetics – a global best-seller for over 20 years – covers the advanced knowledge engineers involved in electromagnetic need to know, particularly as the topic relates to the fast-moving, continually evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antenna, microwave and wireless communication) points to an increase in the number of engineers needed to specialize in this field. In addition, the Instructor Book Companion Site contains a rich collection of multimedia resources for use with this text. Resources include: Ready-made lecture notes in Power Point format for all the chapters. Forty-nine MATLAB® programs to compute, plot and animate some of the wave phenomena Nearly 600 end-of-chapter problems, that's an average of 40 problems per chapter (200 new problems; 50% more than in the first edition) A thoroughly updated Solutions Manual 2500 slides for Instructors are included.