The Hopf Bifurcation and Its Applications

The Hopf Bifurcation and Its Applications PDF Author: J. E. Marsden
Publisher: Springer Science & Business Media
ISBN: 1461263743
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
The goal of these notes is to give a reasonahly com plete, although not exhaustive, discussion of what is commonly referred to as the Hopf bifurcation with applications to spe cific problems, including stability calculations. Historical ly, the subject had its origins in the works of Poincare [1] around 1892 and was extensively discussed by Andronov and Witt [1] and their co-workers starting around 1930. Hopf's basic paper [1] appeared in 1942. Although the term "Poincare Andronov-Hopf bifurcation" is more accurate (sometimes Friedrichs is also included), the name "Hopf Bifurcation" seems more common, so we have used it. Hopf's crucial contribution was the extension from two dimensions to higher dimensions. The principal technique employed in the body of the text is that of invariant manifolds. The method of Ruelle Takens [1] is followed, with details, examples and proofs added. Several parts of the exposition in the main text come from papers of P. Chernoff, J. Dorroh, O. Lanford and F. Weissler to whom we are grateful. The general method of invariant manifolds is common in dynamical systems and in ordinary differential equations: see for example, Hale [1,2] and Hartman [1]. Of course, other methods are also available. In an attempt to keep the picture balanced, we have included samples of alternative approaches. Specifically, we have included a translation (by L. Howard and N. Kopell) of Hopf's original (and generally unavailable) paper.

The Hopf Bifurcation and Its Applications

The Hopf Bifurcation and Its Applications PDF Author: J. E. Marsden
Publisher: Springer Science & Business Media
ISBN: 1461263743
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
The goal of these notes is to give a reasonahly com plete, although not exhaustive, discussion of what is commonly referred to as the Hopf bifurcation with applications to spe cific problems, including stability calculations. Historical ly, the subject had its origins in the works of Poincare [1] around 1892 and was extensively discussed by Andronov and Witt [1] and their co-workers starting around 1930. Hopf's basic paper [1] appeared in 1942. Although the term "Poincare Andronov-Hopf bifurcation" is more accurate (sometimes Friedrichs is also included), the name "Hopf Bifurcation" seems more common, so we have used it. Hopf's crucial contribution was the extension from two dimensions to higher dimensions. The principal technique employed in the body of the text is that of invariant manifolds. The method of Ruelle Takens [1] is followed, with details, examples and proofs added. Several parts of the exposition in the main text come from papers of P. Chernoff, J. Dorroh, O. Lanford and F. Weissler to whom we are grateful. The general method of invariant manifolds is common in dynamical systems and in ordinary differential equations: see for example, Hale [1,2] and Hartman [1]. Of course, other methods are also available. In an attempt to keep the picture balanced, we have included samples of alternative approaches. Specifically, we have included a translation (by L. Howard and N. Kopell) of Hopf's original (and generally unavailable) paper.

Bifurcation Theory And Applications

Bifurcation Theory And Applications PDF Author: Shouhong Wang
Publisher: World Scientific
ISBN: 9814480592
Category : Science
Languages : en
Pages : 391

Get Book Here

Book Description
This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.

Bifurcation Theory

Bifurcation Theory PDF Author: Hansjörg Kielhöfer
Publisher: Springer Science & Business Media
ISBN: 0387216332
Category : Mathematics
Languages : en
Pages : 355

Get Book Here

Book Description
In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations.

Theory and Applications of Hopf Bifurcation

Theory and Applications of Hopf Bifurcation PDF Author: B. D. Hassard
Publisher: CUP Archive
ISBN: 9780521231589
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
This text will be of value to all those interested in and studying the subject in the mathematical, natural and engineering sciences.

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory PDF Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648

Get Book Here

Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Topics in Bifurcation Theory and Applications

Topics in Bifurcation Theory and Applications PDF Author: G‚rard Iooss
Publisher: World Scientific
ISBN: 9789810237288
Category : Technology & Engineering
Languages : en
Pages : 204

Get Book Here

Book Description
This textbook presents the most efficient analytical techniques in the local bifurcation theory of vector fields. It is centered on the theory of normal forms and its applications, including interaction with symmetries. The first part of the book reviews the center manifold reduction and introduces normal forms (with complete proofs). Basic bifurcations are studied together with bifurcations in the presence of symmetries. Special attention is given to examples with reversible vector fields, including the physical example given by the water waves. In this second edition, many problems with detailed solutions are added at the end of the first part (some systems being in infinite dimensions). The second part deals with the Couette-Taylor hydrodynamical stability problem, between concentric rotating cylinders. The spatial structure of various steady or unsteady solutions results directly from the analysis of the reduced system on a center manifold. In this part we also study bifurcations (simple here) from group orbits of solutions in an elementary way (avoiding heavy algebra). The third part analyzes bifurcations from time periodic solutions of autonomous vector fields. A normal form theory is developed, covering all cases, and emphasizing a partial Floquet reduction theory, which is applicable in infinite dimensions. Studies of period doubling as well as Arnold's resonance tongues are included in this part.

Delay Differential Equations and Applications

Delay Differential Equations and Applications PDF Author: O. Arino
Publisher: Springer Science & Business Media
ISBN: 9781402036460
Category : Mathematics
Languages : en
Pages : 612

Get Book Here

Book Description
This book groups material that was used for the Marrakech 2002 School on Delay Di'erential Equations and Applications. The school was held from September 9-21 2002 at the Semlalia College of Sciences of the Cadi Ayyad University, Marrakech, Morocco. 47 participants and 15 instructors originating from 21 countries attended the school. Fin- cial limitations only allowed support for part of the people from Africa andAsiawhohadexpressedtheirinterestintheschoolandhadhopedto come. Theschoolwassupportedby'nancementsfromNATO-ASI(Nato advanced School), the International Centre of Pure and Applied Mat- matics (CIMPA, Nice, France) and Cadi Ayyad University. The activity of the school consisted in courses, plenary lectures (3) and communi- tions (9), from Monday through Friday, 8. 30 am to 6. 30 pm. Courses were divided into units of 45mn duration, taught by block of two units, with a short 5mn break between two units within a block, and a 25mn break between two blocks. The school was intended for mathematicians willing to acquire some familiarity with delay di'erential equations or enhance their knowledge on this subject. The aim was indeed to extend the basic set of knowledge, including ordinary di'erential equations and semilinearevolutionequations,suchasforexamplethedi'usion-reaction equations arising in morphogenesis or the Belouzov-Zhabotinsky ch- ical reaction, and the classic approach for the resolution of these eq- tions by perturbation, to equations having in addition terms involving past values of the solution.

Introduction to Perturbation Methods

Introduction to Perturbation Methods PDF Author: Mark H. Holmes
Publisher: Springer Science & Business Media
ISBN: 1461253470
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
This introductory graduate text is based on a graduate course the author has taught repeatedly over the last ten years to students in applied mathematics, engineering sciences, and physics. Each chapter begins with an introductory development involving ordinary differential equations, and goes on to cover such traditional topics as boundary layers and multiple scales. However, it also contains material arising from current research interest, including homogenisation, slender body theory, symbolic computing, and discrete equations. Many of the excellent exercises are derived from problems of up-to-date research and are drawn from a wide range of application areas.

Nonlinear Dynamical Economics and Chaotic Motion

Nonlinear Dynamical Economics and Chaotic Motion PDF Author: Hans-Walter Lorenz
Publisher: Springer Science & Business Media
ISBN: 3662222337
Category : Business & Economics
Languages : en
Pages : 258

Get Book Here

Book Description
The plan to publish the present book arose while I was preparing a joint work with Gunter Gabisch (Gabisch, G. /Lorenz, H. -W. : Business Cycle Theory. Berlin-Heidel berg-New York: Springer). It turned out that a lot of interesting material could only be sketched in a business cycle text, either because the relevance for business cycle theory was not evident or because the material required an interest in dynamical economics which laid beyond the scope of a survey text for advanced undergraduates. While much of the material enclosed in this book can be found in condensed and sometimes more or less identical form in that business cycle text, the present monograph attempts to present nonlinear dynamical economics in a broader context with economic examples from other fields than business cycle theory. It is a pleasure for me to acknowledge the critical comments, extremely detailed remarks, or suggestions by many friends and colleagues. The responses to earlier versions of the manuscript by W. A. Barnett, M. Boldrin, W. A. Brock, C. Chiarella, C. Dale, G. Feichtinger, P. Flaschel, D. K. Foley, R. M. Goodwin, D. Kelsey, M. Lines, A. Medio, L. Montrucchio, P. Read, C. Sayers, A. Schmutzler, H. Schnabl, G. Silverberg, H. -\'\!. Sinn, J. Sterman, and R. Tscherning not only encouraged me to publish the book in its present form but helped to remove numerous errors (not only typographic ones) and conceptnal misunderstandings and flaws. Particular thanks go to G.

Elementary Stability and Bifurcation Theory

Elementary Stability and Bifurcation Theory PDF Author: Gerard Iooss
Publisher: Springer Science & Business Media
ISBN: 1461209978
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.