Author: Sidney C. Port
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 920
Book Description
Throughout Theoretical Probability for Applications the focus is on the practical uses of this increasingly important tool. It develops topics of discrete time probability theory for use in a multitude of applications, including stochastic processes, theoretical statistics, and other disciplines that require a sound foundation in modern probability theory. Principles of measure theory related to the study of probability theory are developed as they are required throughout the book. The book examines most of the basic probability models that involve only a finite or countably infinite number of random variables. Topics in the "Discrete Models" section include Bernoulli trials, random walks, matching, sums of indicators, multinomial trials. Poisson approximations and processes, sampling. Markov chains, and discrete renewal theory. Nondiscrete models discussed include univariate, Beta, sampling, and Dirichlet distributions as well as order statistics.
Theoretical Probability for Applications
Author: Sidney C. Port
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 920
Book Description
Throughout Theoretical Probability for Applications the focus is on the practical uses of this increasingly important tool. It develops topics of discrete time probability theory for use in a multitude of applications, including stochastic processes, theoretical statistics, and other disciplines that require a sound foundation in modern probability theory. Principles of measure theory related to the study of probability theory are developed as they are required throughout the book. The book examines most of the basic probability models that involve only a finite or countably infinite number of random variables. Topics in the "Discrete Models" section include Bernoulli trials, random walks, matching, sums of indicators, multinomial trials. Poisson approximations and processes, sampling. Markov chains, and discrete renewal theory. Nondiscrete models discussed include univariate, Beta, sampling, and Dirichlet distributions as well as order statistics.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 920
Book Description
Throughout Theoretical Probability for Applications the focus is on the practical uses of this increasingly important tool. It develops topics of discrete time probability theory for use in a multitude of applications, including stochastic processes, theoretical statistics, and other disciplines that require a sound foundation in modern probability theory. Principles of measure theory related to the study of probability theory are developed as they are required throughout the book. The book examines most of the basic probability models that involve only a finite or countably infinite number of random variables. Topics in the "Discrete Models" section include Bernoulli trials, random walks, matching, sums of indicators, multinomial trials. Poisson approximations and processes, sampling. Markov chains, and discrete renewal theory. Nondiscrete models discussed include univariate, Beta, sampling, and Dirichlet distributions as well as order statistics.
Elementary Probability for Applications
Author: Rick Durrett
Publisher: Cambridge University Press
ISBN: 1139480731
Category : Mathematics
Languages : en
Pages : 255
Book Description
This clear and lively introduction to probability theory concentrates on the results that are the most useful for applications, including combinatorial probability and Markov chains. Concise and focused, it is designed for a one-semester introductory course in probability for students who have some familiarity with basic calculus. Reflecting the author's philosophy that the best way to learn probability is to see it in action, there are more than 350 problems and 200 examples. The examples contain all the old standards such as the birthday problem and Monty Hall, but also include a number of applications not found in other books, from areas as broad ranging as genetics, sports, finance, and inventory management.
Publisher: Cambridge University Press
ISBN: 1139480731
Category : Mathematics
Languages : en
Pages : 255
Book Description
This clear and lively introduction to probability theory concentrates on the results that are the most useful for applications, including combinatorial probability and Markov chains. Concise and focused, it is designed for a one-semester introductory course in probability for students who have some familiarity with basic calculus. Reflecting the author's philosophy that the best way to learn probability is to see it in action, there are more than 350 problems and 200 examples. The examples contain all the old standards such as the birthday problem and Monty Hall, but also include a number of applications not found in other books, from areas as broad ranging as genetics, sports, finance, and inventory management.
High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
The Theory of Probability
Author: Santosh S. Venkatesh
Publisher: Cambridge University Press
ISBN: 1107024471
Category : Mathematics
Languages : en
Pages : 830
Book Description
From classical foundations to modern theory, this comprehensive guide to probability interweaves mathematical proofs, historical context and detailed illustrative applications.
Publisher: Cambridge University Press
ISBN: 1107024471
Category : Mathematics
Languages : en
Pages : 830
Book Description
From classical foundations to modern theory, this comprehensive guide to probability interweaves mathematical proofs, historical context and detailed illustrative applications.
Elementary Probability
Author: David Stirzaker
Publisher: Cambridge University Press
ISBN: 1139441035
Category : Mathematics
Languages : en
Pages : 540
Book Description
Now available in a fully revised and updated second edition, this well established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands. Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous worked examples and exercises to help build the important skills necessary for problem solving.
Publisher: Cambridge University Press
ISBN: 1139441035
Category : Mathematics
Languages : en
Pages : 540
Book Description
Now available in a fully revised and updated second edition, this well established textbook provides a straightforward introduction to the theory of probability. The presentation is entertaining without any sacrifice of rigour; important notions are covered with the clarity that the subject demands. Topics covered include conditional probability, independence, discrete and continuous random variables, basic combinatorics, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous worked examples and exercises to help build the important skills necessary for problem solving.
Probability
Author: Robert P. Dobrow
Publisher: John Wiley & Sons
ISBN: 1118589440
Category : Mathematics
Languages : en
Pages : 366
Book Description
An introduction to probability at the undergraduate level Chance and randomness are encountered on a daily basis. Authored by a highly qualified professor in the field, Probability: With Applications and R delves into the theories and applications essential to obtaining a thorough understanding of probability. With real-life examples and thoughtful exercises from fields as diverse as biology, computer science, cryptology, ecology, public health, and sports, the book is accessible for a variety of readers. The book’s emphasis on simulation through the use of the popular R software language clarifies and illustrates key computational and theoretical results. Probability: With Applications and R helps readers develop problem-solving skills and delivers an appropriate mix of theory and application. The book includes: Chapters covering first principles, conditional probability, independent trials, random variables, discrete distributions, continuous probability, continuous distributions, conditional distribution, and limits An early introduction to random variables and Monte Carlo simulation and an emphasis on conditional probability, conditioning, and developing probabilistic intuition An R tutorial with example script files Many classic and historical problems of probability as well as nontraditional material, such as Benford’s law, power-law distributions, and Bayesian statistics A topics section with suitable material for projects and explorations, such as random walk on graphs, Markov chains, and Markov chain Monte Carlo Chapter-by-chapter summaries and hundreds of practical exercises Probability: With Applications and R is an ideal text for a beginning course in probability at the undergraduate level.
Publisher: John Wiley & Sons
ISBN: 1118589440
Category : Mathematics
Languages : en
Pages : 366
Book Description
An introduction to probability at the undergraduate level Chance and randomness are encountered on a daily basis. Authored by a highly qualified professor in the field, Probability: With Applications and R delves into the theories and applications essential to obtaining a thorough understanding of probability. With real-life examples and thoughtful exercises from fields as diverse as biology, computer science, cryptology, ecology, public health, and sports, the book is accessible for a variety of readers. The book’s emphasis on simulation through the use of the popular R software language clarifies and illustrates key computational and theoretical results. Probability: With Applications and R helps readers develop problem-solving skills and delivers an appropriate mix of theory and application. The book includes: Chapters covering first principles, conditional probability, independent trials, random variables, discrete distributions, continuous probability, continuous distributions, conditional distribution, and limits An early introduction to random variables and Monte Carlo simulation and an emphasis on conditional probability, conditioning, and developing probabilistic intuition An R tutorial with example script files Many classic and historical problems of probability as well as nontraditional material, such as Benford’s law, power-law distributions, and Bayesian statistics A topics section with suitable material for projects and explorations, such as random walk on graphs, Markov chains, and Markov chain Monte Carlo Chapter-by-chapter summaries and hundreds of practical exercises Probability: With Applications and R is an ideal text for a beginning course in probability at the undergraduate level.
Introduction to Probability
Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Text Book of Probability and Theoretical Distributions
Author: A. K. Sharma
Publisher: Discovery Publishing House
ISBN: 9788171419388
Category : Mathematical statistics
Languages : en
Pages : 216
Book Description
This book Probability and Theoretical Distributions is an outcome of author s long teaching experience of the subject. This book present a thorough treatment of what is required for the students of B.A./B.Sc. of various Universities. It includes fundamental concepts illustrated examples and application to various problems. Contents: Probability and Expected Value, Theoretical Distributions.
Publisher: Discovery Publishing House
ISBN: 9788171419388
Category : Mathematical statistics
Languages : en
Pages : 216
Book Description
This book Probability and Theoretical Distributions is an outcome of author s long teaching experience of the subject. This book present a thorough treatment of what is required for the students of B.A./B.Sc. of various Universities. It includes fundamental concepts illustrated examples and application to various problems. Contents: Probability and Expected Value, Theoretical Distributions.
Probability with Applications in Engineering, Science, and Technology
Author: Matthew A. Carlton
Publisher: Springer
ISBN: 3319524011
Category : Mathematics
Languages : en
Pages : 664
Book Description
This updated and revised first-course textbook in applied probability provides a contemporary and lively post-calculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective engineers and scientists, and those business and social science majors interested in the quantitative aspects of their disciplines. The textbook contains enough material for a year-long course, though many instructors will use it for a single term (one semester or one quarter). As such, three course syllabi with expanded course outlines are now available for download on the book’s page on the Springer website. A one-term course would cover material in the core chapters (1-4), supplemented by selections from one or more of the remaining chapters on statistical inference (Ch. 5), Markov chains (Ch. 6), stochastic processes (Ch. 7), and signal processing (Ch. 8—available exclusively online and specifically designed for electrical and computer engineers, making the book suitable for a one-term class on random signals and noise). For a year-long course, core chapters (1-4) are accessible to those who have taken a year of univariate differential and integral calculus; matrix algebra, multivariate calculus, and engineering mathematics are needed for the latter, more advanced chapters. At the heart of the textbook’s pedagogy are 1,100 applied exercises, ranging from straightforward to reasonably challenging, roughly 700 exercises in the first four “core” chapters alone—a self-contained textbook of problems introducing basic theoretical knowledge necessary for solving problems and illustrating how to solve the problems at hand – in R and MATLAB, including code so that students can create simulations. New to this edition • Updated and re-worked Recommended Coverage for instructors, detailing which courses should use the textbook and how to utilize different sections for various objectives and time constraints • Extended and revised instructions and solutions to problem sets • Overhaul of Section 7.7 on continuous-time Markov chains • Supplementary materials include three sample syllabi and updated solutions manuals for both instructors and students
Publisher: Springer
ISBN: 3319524011
Category : Mathematics
Languages : en
Pages : 664
Book Description
This updated and revised first-course textbook in applied probability provides a contemporary and lively post-calculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective engineers and scientists, and those business and social science majors interested in the quantitative aspects of their disciplines. The textbook contains enough material for a year-long course, though many instructors will use it for a single term (one semester or one quarter). As such, three course syllabi with expanded course outlines are now available for download on the book’s page on the Springer website. A one-term course would cover material in the core chapters (1-4), supplemented by selections from one or more of the remaining chapters on statistical inference (Ch. 5), Markov chains (Ch. 6), stochastic processes (Ch. 7), and signal processing (Ch. 8—available exclusively online and specifically designed for electrical and computer engineers, making the book suitable for a one-term class on random signals and noise). For a year-long course, core chapters (1-4) are accessible to those who have taken a year of univariate differential and integral calculus; matrix algebra, multivariate calculus, and engineering mathematics are needed for the latter, more advanced chapters. At the heart of the textbook’s pedagogy are 1,100 applied exercises, ranging from straightforward to reasonably challenging, roughly 700 exercises in the first four “core” chapters alone—a self-contained textbook of problems introducing basic theoretical knowledge necessary for solving problems and illustrating how to solve the problems at hand – in R and MATLAB, including code so that students can create simulations. New to this edition • Updated and re-worked Recommended Coverage for instructors, detailing which courses should use the textbook and how to utilize different sections for various objectives and time constraints • Extended and revised instructions and solutions to problem sets • Overhaul of Section 7.7 on continuous-time Markov chains • Supplementary materials include three sample syllabi and updated solutions manuals for both instructors and students
Theoretical Statistics
Author: Robert W. Keener
Publisher: Springer Science & Business Media
ISBN: 0387938397
Category : Mathematics
Languages : en
Pages : 543
Book Description
Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.
Publisher: Springer Science & Business Media
ISBN: 0387938397
Category : Mathematics
Languages : en
Pages : 543
Book Description
Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.