Theoretical Modeling of Inorganic Nanostructures

Theoretical Modeling of Inorganic Nanostructures PDF Author: R. A. Evarestov
Publisher: Springer Nature
ISBN: 3030429946
Category : Science
Languages : en
Pages : 865

Get Book Here

Book Description
This book summarizes the state of the art in the theoretical modeling of inorganic nanostructures. Extending the first edition, published in 2015, it presents applications to new nanostructured materials and theoretical explanations of recently discovered optical and thermodynamic properties of known nanomaterials. It discusses the developments in theoretical modeling of nanostructures, describing fundamental approaches such as symmetry analysis and applied calculation methods. The book also examines the theoretical aspects of many thermodynamic and the optical properties of nanostructures. The new edition includes additional descriptions of the theoretical modeling of nanostructures in novel materials such as the V2O5 binary oxide, ZnS, CdS, MoSSe and SnS2.

Theoretical Modeling of Inorganic Nanostructures

Theoretical Modeling of Inorganic Nanostructures PDF Author: R. A. Evarestov
Publisher: Springer Nature
ISBN: 3030429946
Category : Science
Languages : en
Pages : 865

Get Book Here

Book Description
This book summarizes the state of the art in the theoretical modeling of inorganic nanostructures. Extending the first edition, published in 2015, it presents applications to new nanostructured materials and theoretical explanations of recently discovered optical and thermodynamic properties of known nanomaterials. It discusses the developments in theoretical modeling of nanostructures, describing fundamental approaches such as symmetry analysis and applied calculation methods. The book also examines the theoretical aspects of many thermodynamic and the optical properties of nanostructures. The new edition includes additional descriptions of the theoretical modeling of nanostructures in novel materials such as the V2O5 binary oxide, ZnS, CdS, MoSSe and SnS2.

Computational Modeling of Inorganic Nanomaterials

Computational Modeling of Inorganic Nanomaterials PDF Author: Stefan T. Bromley
Publisher: CRC Press
ISBN: 9780367783044
Category : Inorganic compounds
Languages : en
Pages : 423

Get Book Here

Book Description
This volume provides an accessible, unified introduction to a variety of methods for modeling inorganic materials as their dimensions approach the nanoscale. It guides readers on choosing the most appropriate models and methods for studying the structure and properties (such as atomic structure, optical absorption and luminescence, and electrica

Nanostructures

Nanostructures PDF Author: Christophe Jean Delerue
Publisher: Springer Science & Business Media
ISBN: 3662089033
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book Here

Book Description
Provides the theoretical background needed by physicists, engineers and students to simulate nano-devices, semiconductor quantum dots and molecular devices. It presents in a unified way the theoretical concepts, the more recent semi-empirical and ab initio methods, and their application to experiments. The topics include quantum confinement, dielectric and optical properties, non-radiative processes, defects and impurities, and quantum transport. This guidebook not only provides newcomers with an accessible overview (requiring only basic knowledge of quantum mechanics and solid-state physics) but also provides active researchers with practical simulation tools.

Self-Assembled Organic-Inorganic Nanostructures

Self-Assembled Organic-Inorganic Nanostructures PDF Author: Christian von Borczyskowski
Publisher: CRC Press
ISBN: 9814745448
Category : Science
Languages : en
Pages : 412

Get Book Here

Book Description
The current state and perspectives in natural and life sciences are strongly linked to the development of novel complex organic-inorganic materials at various levels of organization, including semiconductor quantum dots (QDs) and QD-based nanostructures with unique optical and physico-chemical properties. This book provides a comprehensive description of the morphology and main physico-chemical properties of self-assembled inorganic-dye nanostructures as well as some applications in the field of nanotechnology. It crosses disciplines to examine essential nanoassembly principles of QD interaction with organic molecules, excited state dynamics in nanoobjects, theoretical models, and methodologies. Based on ensemble and single-nanoobject detection, the book quantitatively shows (for the first time on a series of nanoassemblies) that surface-mediated processes (formation of trap states) dictate the probability of several of the most interesting and potentially useful photophysical phenomena (FRET- or non-FRET-induced quenching of QD photoluminescence) observed for colloidal QDs and QD–dye nanoassemblies. Further, nanostructures can be generated by nanolithography and thereafter selectively decorated with dye molecules. A similar approach applies to natural nanosized surface heterogeneities.

Inorganic Two-dimensional Nanomaterials

Inorganic Two-dimensional Nanomaterials PDF Author: Changzheng Wu
Publisher: Royal Society of Chemistry
ISBN: 1788012062
Category : Science
Languages : en
Pages : 428

Get Book Here

Book Description
Inorganic 2D nanomaterials, or inorganic graphene analogues, are gaining great attention due to their unique properties and potential energy applications. They contain ultrathin nanosheet morphology with one-dimensional confinement, but unlike pure carbon graphene, inorganic two-dimensional nanomaterials have a more abundant elemental composition and can form different crystallographic structures. These properties contribute to their unique chemical reaction activity, tunable physical properties and facilitate applications in the field of energy conversion and storage. Inorganic Two-dimensional Nanomaterials details the development of the nanostructures from computational simulation and theoretical understanding to their synthesis and characterization. Individual chapters then cover different applications of the materials as electrocatalysts, flexible supercapicitors, flexible lithium ion batteries and thermoelectrical devices. The book provides a comprehensive overview of the field for researchers working in the areas of materials chemistry, physics, energy and catalysis.

Synthesis and Applications of Inorganic Nanostructures

Synthesis and Applications of Inorganic Nanostructures PDF Author: Huaqiang Cao
Publisher: John Wiley & Sons
ISBN: 3527698175
Category : Science
Languages : en
Pages : 720

Get Book Here

Book Description
Authored by a leading figure in the field, this book systematically describes all the fundamental aspects and applications of inorganic nanostructures from zero to three dimensions. It not only discusses various synthesis technologies, but also covers the physical properties of inorganic nanostructures, such as optical, electric and magnetic properties, and practical applications such as energy storage (including Li-ion and Ni-MH batteries and supercapacitors), superhydrophobic and bio-applications, etc. The focus throughout is on the synthesis-structure-application relationships, including the growth mechanisms for the nanostrucutres. Concise yet comprehensive, this is indispensable reading for chemists and materials scientists.

Special Issue: Theoretical Modeling and Simulation of Nanostructures

Special Issue: Theoretical Modeling and Simulation of Nanostructures PDF Author: Jin-long Yang
Publisher:
ISBN:
Category :
Languages : en
Pages : 169

Get Book Here

Book Description


Computational Modelling of Nanomaterials

Computational Modelling of Nanomaterials PDF Author: Panagiotis Grammatikopoulos
Publisher: Elsevier
ISBN: 0128214988
Category : Technology & Engineering
Languages : en
Pages : 244

Get Book Here

Book Description
Due to their small size and their dependence on very fast phenomena, nanomaterials are ideal systems for computational modelling. This book provides an overview of various nanosystems classified by their dimensions: 0D (nanoparticles, QDs, etc.), 1D (nanowires, nanotubes), 2D (thin films, graphene, etc.), 3D (nanostructured bulk materials, devices). Fractal dimensions, such as nanoparticle agglomerates, percolating films and combinations of materials of different dimensionalities are also covered (e.g. epitaxial decoration of nanowires by nanoparticles, i.e. 0D+1D nanomaterials). For each class, the focus will be on growth, structure, and physical/chemical properties. The book presents a broad range of techniques, including density functional theory, molecular dynamics, non-equilibrium molecular dynamics, finite element modelling (FEM), numerical modelling and meso-scale modelling. The focus is on each method’s relevance and suitability for the study of materials and phenomena in the nanoscale. This book is an important resource for understanding the mechanisms behind basic properties of nanomaterials, and the major techniques for computational modelling of nanomaterials. Explores the major modelling techniques used for different classes of nanomaterial Assesses the best modelling technique to use for each different type of nanomaterials Discusses the challenges of using certain modelling techniques with specific nanomaterials

Topics in Theoretical and Computational Nanoscience

Topics in Theoretical and Computational Nanoscience PDF Author: Jeffrey Michael McMahon
Publisher: Springer Science & Business Media
ISBN: 1441982493
Category : Science
Languages : en
Pages : 204

Get Book Here

Book Description
Interest in structures with nanometer-length features has significantly increased as experimental techniques for their fabrication have become possible. The study of phenomena in this area is termed nanoscience, and is a research focus of chemists, pure and applied physics, electrical engineers, and others. The reason for such a focus is the wide range of novel effects that exist at this scale, both of fundamental and practical interest, which often arise from the interaction between metallic nanostructures and light, and range from large electromagnetic field enhancements to extraordinary optical transmission of light through arrays of subwavelength holes. This dissertation is aimed at addressing some of the most fundamental and outstanding questions in nanoscience from a theoretical and computational perspective, specifically: · At the single nanoparticle level, how well do experimental and classical electrodynamics agree? · What is the detailed relationship between optical response and nanoparticle morphology, composition, and environment? · Does an optimal nanostructure exist for generating large electromagnetic field enhancements, and is there a fundamental limit to this? · Can nanostructures be used to control light, such as confining it, or causing fundamentally different scattering phenomena to interact, such as electromagnetic surface modes and diffraction effects? · Is it possible to calculate quantum effects using classical electrodynamics, and if so, how do they affect optical properties?

Modeling, Characterization and Production of Nanomaterials

Modeling, Characterization and Production of Nanomaterials PDF Author:
Publisher: Elsevier
ISBN: 1782422358
Category : Technology & Engineering
Languages : en
Pages : 555

Get Book Here

Book Description
Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications. Comprehensive coverage of the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focus on practical applications and industry needs, supported by a solid outlining of theoretical background Draws on the expertise of leading researchers in the field of nanomaterials from around the world