Author: Carolyn J. Crouch
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 164
Book Description
Theoretical Issues in Information Retrieval
Author: Carolyn J. Crouch
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 164
Book Description
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 164
Book Description
Information Retrieval Systems
Author: Gerald J. Kowalski
Publisher: Springer
ISBN: 058532090X
Category : Computers
Languages : en
Pages : 291
Book Description
The growth of the Internet and the availability of enormous volumes of data in digital form have necessitated intense interest in techniques to assist the user in locating data of interest. The Internet has over 350 million pages of data and is expected to reach over one billion pages by the year 2000. Buried on the Internet are both valuable nuggets to answer questions as well as a large quantity of information the average person does not care about. The Digital Library effort is also progressing, with the goal of migrating from the traditional book environment to a digital library environment. The challenge to both authors of new publications that will reside on this information domain and developers of systems to locate information is to provide the information and capabilities to sort out the non-relevant items from those desired by the consumer. In effect, as we proceed down this path, it will be the computer that determines what we see versus the human being. The days of going to a library and browsing the new book shelf are being replaced by electronic searching the Internet or the library catalogs. Whatever the search engines return will constrain our knowledge of what information is available. An understanding of Information Retrieval Systems puts this new environment into perspective for both the creator of documents and the consumer trying to locate information.
Publisher: Springer
ISBN: 058532090X
Category : Computers
Languages : en
Pages : 291
Book Description
The growth of the Internet and the availability of enormous volumes of data in digital form have necessitated intense interest in techniques to assist the user in locating data of interest. The Internet has over 350 million pages of data and is expected to reach over one billion pages by the year 2000. Buried on the Internet are both valuable nuggets to answer questions as well as a large quantity of information the average person does not care about. The Digital Library effort is also progressing, with the goal of migrating from the traditional book environment to a digital library environment. The challenge to both authors of new publications that will reside on this information domain and developers of systems to locate information is to provide the information and capabilities to sort out the non-relevant items from those desired by the consumer. In effect, as we proceed down this path, it will be the computer that determines what we see versus the human being. The days of going to a library and browsing the new book shelf are being replaced by electronic searching the Internet or the library catalogs. Whatever the search engines return will constrain our knowledge of what information is available. An understanding of Information Retrieval Systems puts this new environment into perspective for both the creator of documents and the consumer trying to locate information.
Information Storage and Retrieval Systems
Author: Gerald J. Kowalski
Publisher: Springer Science & Business Media
ISBN: 0306470314
Category : Computers
Languages : en
Pages : 323
Book Description
Chapter 1 places into perspective a total Information Storage and Retrieval System. This perspective introduces new challenges to the problems that need to be theoretically addressed and commercially implemented. Ten years ago commercial implementation of the algorithms being developed was not realistic, allowing theoreticians to limit their focus to very specific areas. Bounding a problem is still essential in deriving theoretical results. But the commercialization and insertion of this technology into systems like the Internet that are widely being used changes the way problems are bounded. From a theoretical perspective, efficient scalability of algorithms to systems with gigabytes and terabytes of data, operating with minimal user search statement information, and making maximum use of all functional aspects of an information system need to be considered. The dissemination systems using persistent indexes or mail files to modify ranking algorithms and combining the search of structured information fields and free text into a consolidated weighted output are examples of potential new areas of investigation. The best way for the theoretician or the commercial developer to understand the importance of problems to be solved is to place them in the context of a total vision of a complete system. Understanding the differences between Digital Libraries and Information Retrieval Systems will add an additional dimension to the potential future development of systems. The collaborative aspects of digital libraries can be viewed as a new source of information that dynamically could interact with information retrieval techniques.
Publisher: Springer Science & Business Media
ISBN: 0306470314
Category : Computers
Languages : en
Pages : 323
Book Description
Chapter 1 places into perspective a total Information Storage and Retrieval System. This perspective introduces new challenges to the problems that need to be theoretically addressed and commercially implemented. Ten years ago commercial implementation of the algorithms being developed was not realistic, allowing theoreticians to limit their focus to very specific areas. Bounding a problem is still essential in deriving theoretical results. But the commercialization and insertion of this technology into systems like the Internet that are widely being used changes the way problems are bounded. From a theoretical perspective, efficient scalability of algorithms to systems with gigabytes and terabytes of data, operating with minimal user search statement information, and making maximum use of all functional aspects of an information system need to be considered. The dissemination systems using persistent indexes or mail files to modify ranking algorithms and combining the search of structured information fields and free text into a consolidated weighted output are examples of potential new areas of investigation. The best way for the theoretician or the commercial developer to understand the importance of problems to be solved is to place them in the context of a total vision of a complete system. Understanding the differences between Digital Libraries and Information Retrieval Systems will add an additional dimension to the potential future development of systems. The collaborative aspects of digital libraries can be viewed as a new source of information that dynamically could interact with information retrieval techniques.
Introduction to Information Retrieval
Author: Christopher D. Manning
Publisher: Cambridge University Press
ISBN: 1139472100
Category : Computers
Languages : en
Pages :
Book Description
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.
Publisher: Cambridge University Press
ISBN: 1139472100
Category : Computers
Languages : en
Pages :
Book Description
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.
Information Retrieval Interaction
Author: Peter Ingwersen
Publisher:
ISBN:
Category : Database searching
Languages : en
Pages : 264
Book Description
Publisher:
ISBN:
Category : Database searching
Languages : en
Pages : 264
Book Description
The Application of Automata Theory to Problems in Information Retrieval
Author: United States. National Bureau of Standards. Data Processing Systems Division
Publisher:
ISBN:
Category : Information storage and retrieval systems
Languages : en
Pages : 82
Book Description
Publisher:
ISBN:
Category : Information storage and retrieval systems
Languages : en
Pages : 82
Book Description
Information Retrieval: Uncertainty and Logics
Author: Fabio Crestani
Publisher: Springer Science & Business Media
ISBN: 9780792383024
Category : Computers
Languages : en
Pages : 362
Book Description
A collection of papers proposing, developing, and implementing logical IR models. After an introductory chapter on non-classical logic as the appropriate formalism with which to build IR models, papers are divided into groups on three approaches: logical models, uncertainty models, and meta-models. Topics include preferential models of query by navigation, a logic for multimedia information retrieval, logical imaging and probabilistic information retrieval, and an axiomatic aboutness theory for information retrieval. Can be used as a text for a graduate course on information retrieval or database systems, and as a reference for researchers and practitioners in industry. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: Springer Science & Business Media
ISBN: 9780792383024
Category : Computers
Languages : en
Pages : 362
Book Description
A collection of papers proposing, developing, and implementing logical IR models. After an introductory chapter on non-classical logic as the appropriate formalism with which to build IR models, papers are divided into groups on three approaches: logical models, uncertainty models, and meta-models. Topics include preferential models of query by navigation, a logic for multimedia information retrieval, logical imaging and probabilistic information retrieval, and an axiomatic aboutness theory for information retrieval. Can be used as a text for a graduate course on information retrieval or database systems, and as a reference for researchers and practitioners in industry. Annotation copyrighted by Book News, Inc., Portland, OR
Information Representation and Retrieval in the Digital Age
Author: Heting Chu
Publisher: Information Today, Inc.
ISBN: 9781573871723
Category : Business & Economics
Languages : en
Pages : 272
Book Description
Information representation and retrieval : an overview -- Information representation I : basic approaches -- Information representation II : other related topics -- Language in information representation and retrieval -- Retrieval techniques and query representation -- Retrieval approaches -- Information retrieval models -- Information retrieval systems -- Retrieval of information unique in content or format -- The user dimension in information representation and retrieval -- Evaluation of information representation and retrieval -- Artificial intelligence in information representation and retrieval.
Publisher: Information Today, Inc.
ISBN: 9781573871723
Category : Business & Economics
Languages : en
Pages : 272
Book Description
Information representation and retrieval : an overview -- Information representation I : basic approaches -- Information representation II : other related topics -- Language in information representation and retrieval -- Retrieval techniques and query representation -- Retrieval approaches -- Information retrieval models -- Information retrieval systems -- Retrieval of information unique in content or format -- The user dimension in information representation and retrieval -- Evaluation of information representation and retrieval -- Artificial intelligence in information representation and retrieval.
Advances in Information Retrieval Theory
Author: Leif Azzopardi
Publisher: Springer Science & Business Media
ISBN: 3642044166
Category : Computers
Languages : en
Pages : 399
Book Description
This book constitutes the refereed proceedings of the Second International Conference on the Theory of Information Retrieval, ICTIR 2009, held in Cambridge, UK, in September 2009. The 18 revised full papers, 14 short papers, and 11 posters presented together with one invited talk were carefully reviewed and selected from 82 submissions. The papers are categorized into four main themes: novel IR models, evaluation, efficiency, and new perspectives in IR. Twenty-one papers fall into the general theme of novel IR models, ranging from various retrieval models, query and term selection models, Web IR models, developments in novelty and diversity, to the modeling of user aspects. There are four papers on new evaluation methodologies, e.g., modeling score distributions, evaluation over sessions, and an axiomatic framework for XML retrieval evaluation. Three papers focus on the issue of efficiency and offer solutions to improve the tractability of PageRank, data cleansing practices for training classifiers, and approximate search for distributed IR. Finally, four papers look into new perspectives of IR and shed light on some new emerging areas of interest, such as the application and adoption of quantum theory in IR.
Publisher: Springer Science & Business Media
ISBN: 3642044166
Category : Computers
Languages : en
Pages : 399
Book Description
This book constitutes the refereed proceedings of the Second International Conference on the Theory of Information Retrieval, ICTIR 2009, held in Cambridge, UK, in September 2009. The 18 revised full papers, 14 short papers, and 11 posters presented together with one invited talk were carefully reviewed and selected from 82 submissions. The papers are categorized into four main themes: novel IR models, evaluation, efficiency, and new perspectives in IR. Twenty-one papers fall into the general theme of novel IR models, ranging from various retrieval models, query and term selection models, Web IR models, developments in novelty and diversity, to the modeling of user aspects. There are four papers on new evaluation methodologies, e.g., modeling score distributions, evaluation over sessions, and an axiomatic framework for XML retrieval evaluation. Three papers focus on the issue of efficiency and offer solutions to improve the tractability of PageRank, data cleansing practices for training classifiers, and approximate search for distributed IR. Finally, four papers look into new perspectives of IR and shed light on some new emerging areas of interest, such as the application and adoption of quantum theory in IR.
Learning to Rank for Information Retrieval
Author: Tie-Yan Liu
Publisher: Springer Science & Business Media
ISBN: 3642142672
Category : Computers
Languages : en
Pages : 282
Book Description
Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people. The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called “learning to rank”. Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches – these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance. This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development.
Publisher: Springer Science & Business Media
ISBN: 3642142672
Category : Computers
Languages : en
Pages : 282
Book Description
Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people. The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called “learning to rank”. Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches – these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance. This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development.