Author: James Casey
Publisher: Birkhäuser
ISBN: 3034892292
Category : Technology & Engineering
Languages : en
Pages : 850
Book Description
This special issue of ZAMP is published to honor Paul M. Naghdi for his contributions to mechanics over the last forty years and more. It is offered in celebration of his long, productive career in continuum mechan ics; a career which has been marked by a passion for the intrinsic beauty of the subject, an uncompromising adherence to academic standards, and an untiring devotion to our profession. Originally, this issue was planned in celebration of Naghdi's 70th birthday, which occurred on 29 March 1994. But, as the papers were being prepared for the press, it became evident that the illness from which Professor Naghdi had been suffering during recent months was extremely serious. On 26 May 1994, a reception took place in the Department of Mechanical Engineering at Berkeley, at which Naghdi received The Berkeley Citation (which is given in lieu of an honorary degree) and where he was also presented with the Table of Contents of the present collection. Subse quently, he had the opportunity to read the papers in manuscript form. He was very touched that his colleagues had chosen to honor him with their fine contributions. The knowledge that he was held in such high esteem by his fellow scientists brought a special pleasure and consolation to him in his last weeks. On Saturday evening, 9 July 1994, Paul Naghdi succumbed to the lung cancer which he had so courageously endured.
Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids
Author: James Casey
Publisher: Birkhäuser
ISBN: 3034892292
Category : Technology & Engineering
Languages : en
Pages : 850
Book Description
This special issue of ZAMP is published to honor Paul M. Naghdi for his contributions to mechanics over the last forty years and more. It is offered in celebration of his long, productive career in continuum mechan ics; a career which has been marked by a passion for the intrinsic beauty of the subject, an uncompromising adherence to academic standards, and an untiring devotion to our profession. Originally, this issue was planned in celebration of Naghdi's 70th birthday, which occurred on 29 March 1994. But, as the papers were being prepared for the press, it became evident that the illness from which Professor Naghdi had been suffering during recent months was extremely serious. On 26 May 1994, a reception took place in the Department of Mechanical Engineering at Berkeley, at which Naghdi received The Berkeley Citation (which is given in lieu of an honorary degree) and where he was also presented with the Table of Contents of the present collection. Subse quently, he had the opportunity to read the papers in manuscript form. He was very touched that his colleagues had chosen to honor him with their fine contributions. The knowledge that he was held in such high esteem by his fellow scientists brought a special pleasure and consolation to him in his last weeks. On Saturday evening, 9 July 1994, Paul Naghdi succumbed to the lung cancer which he had so courageously endured.
Publisher: Birkhäuser
ISBN: 3034892292
Category : Technology & Engineering
Languages : en
Pages : 850
Book Description
This special issue of ZAMP is published to honor Paul M. Naghdi for his contributions to mechanics over the last forty years and more. It is offered in celebration of his long, productive career in continuum mechan ics; a career which has been marked by a passion for the intrinsic beauty of the subject, an uncompromising adherence to academic standards, and an untiring devotion to our profession. Originally, this issue was planned in celebration of Naghdi's 70th birthday, which occurred on 29 March 1994. But, as the papers were being prepared for the press, it became evident that the illness from which Professor Naghdi had been suffering during recent months was extremely serious. On 26 May 1994, a reception took place in the Department of Mechanical Engineering at Berkeley, at which Naghdi received The Berkeley Citation (which is given in lieu of an honorary degree) and where he was also presented with the Table of Contents of the present collection. Subse quently, he had the opportunity to read the papers in manuscript form. He was very touched that his colleagues had chosen to honor him with their fine contributions. The knowledge that he was held in such high esteem by his fellow scientists brought a special pleasure and consolation to him in his last weeks. On Saturday evening, 9 July 1994, Paul Naghdi succumbed to the lung cancer which he had so courageously endured.
The Science and Technology of Flexible Packaging
Author: Barry A. Morris
Publisher: William Andrew
ISBN: 0323855741
Category : Technology & Engineering
Languages : en
Pages : 846
Book Description
The Science and Technology of Flexible Packaging: Multilayer Films from Resin and Process to End Use, Second Edition provides a comprehensive guide on plastic films in flexible packaging, covering scientific principles, materials properties, processes and end use considerations. Sections discuss the science of multilayer films in a concise and impactful way, presenting the fundamental understanding required to improve product design, material selection and processes. In addition, the book includes information on why one material is favored over another and how film or coating affects material properties. Descriptions and analysis of key properties of packaging films are provided from engineering and scientific perspectives. With essential scientific insights, best practice techniques, environmental sustainability information and key principles of structure design, this book provides information aids in material selection and processing, how to shorten development times and deliver stronger products, and ways to enable engineers and scientists to deliver superior products with reduced development time and cost. - Provides essential information on all aspects of multilayer films in flexible packaging, including processing, properties, materials and end use - Bridges the gap between scientific principles and practical challenges - Includes explanations to assist practitioners in overcoming challenges - Enables the reader to address new challenges, such as design for sustainability and eCommerce
Publisher: William Andrew
ISBN: 0323855741
Category : Technology & Engineering
Languages : en
Pages : 846
Book Description
The Science and Technology of Flexible Packaging: Multilayer Films from Resin and Process to End Use, Second Edition provides a comprehensive guide on plastic films in flexible packaging, covering scientific principles, materials properties, processes and end use considerations. Sections discuss the science of multilayer films in a concise and impactful way, presenting the fundamental understanding required to improve product design, material selection and processes. In addition, the book includes information on why one material is favored over another and how film or coating affects material properties. Descriptions and analysis of key properties of packaging films are provided from engineering and scientific perspectives. With essential scientific insights, best practice techniques, environmental sustainability information and key principles of structure design, this book provides information aids in material selection and processing, how to shorten development times and deliver stronger products, and ways to enable engineers and scientists to deliver superior products with reduced development time and cost. - Provides essential information on all aspects of multilayer films in flexible packaging, including processing, properties, materials and end use - Bridges the gap between scientific principles and practical challenges - Includes explanations to assist practitioners in overcoming challenges - Enables the reader to address new challenges, such as design for sustainability and eCommerce
Advances in the Mechanics of Plates and Shells
Author: D. Durban
Publisher: Springer Science & Business Media
ISBN: 0306469545
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
The optimal control of flexible structures is an active area of research. The main body of work in this area is concerned with the control of time-dependent displacements and stresses, and assumes linear elastic conditions, namely linear elastic material behavior and small defor- tion. See, e. g. , [1]–[3], the collections of papers [4, 5], and references therein. On the other hand, in the present paper we consider the static optimal control of a structure made of a nonlinear elastic material and und- going large deformation. An important application is the suppression of static or quasi-static elastic deformation in flexible space structures such as parts of satellites by the use of control loads [6]. Solar rad- tion and radiation from other sources induce a temperature field in the structure, which in turn generates an elastic displacement field. The displacements must usually satisfy certain limitations dictated by the allowed working conditions of various orientation-sensitive instruments and antennas in the space vehicle. For example, a parabolic reflector may cease to be effective when undergoing large deflection. The elastic deformation can be reduced by use of control loads, which may be imp- mented via mechanically-based actuators or more modern piezoelectric devices. When the structure under consideration is made of a rubb- like material and is undergoing large deformation, nonlinear material and geometric effects must be taken into account in the analysis.
Publisher: Springer Science & Business Media
ISBN: 0306469545
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
The optimal control of flexible structures is an active area of research. The main body of work in this area is concerned with the control of time-dependent displacements and stresses, and assumes linear elastic conditions, namely linear elastic material behavior and small defor- tion. See, e. g. , [1]–[3], the collections of papers [4, 5], and references therein. On the other hand, in the present paper we consider the static optimal control of a structure made of a nonlinear elastic material and und- going large deformation. An important application is the suppression of static or quasi-static elastic deformation in flexible space structures such as parts of satellites by the use of control loads [6]. Solar rad- tion and radiation from other sources induce a temperature field in the structure, which in turn generates an elastic displacement field. The displacements must usually satisfy certain limitations dictated by the allowed working conditions of various orientation-sensitive instruments and antennas in the space vehicle. For example, a parabolic reflector may cease to be effective when undergoing large deflection. The elastic deformation can be reduced by use of control loads, which may be imp- mented via mechanically-based actuators or more modern piezoelectric devices. When the structure under consideration is made of a rubb- like material and is undergoing large deformation, nonlinear material and geometric effects must be taken into account in the analysis.
The History of the Theory of Structures
Author: Karl-Eugen Kurrer
Publisher: John Wiley & Sons
ISBN: 3433601348
Category : Technology & Engineering
Languages : en
Pages : 864
Book Description
This book traces the evolution of theory of structures and strength of materials - the development of the geometrical thinking of the Renaissance to become the fundamental engineering science discipline rooted in classical mechanics. Starting with the strength experiments of Leonardo da Vinci and Galileo, the author examines the emergence of individual structural analysis methods and their formation into theory of structures in the 19th century. For the first time, a book of this kind outlines the development from classical theory of structures to the structural mechanics and computational mechanics of the 20th century. In doing so, the author has managed to bring alive the differences between the players with respect to their engineering and scientific profiles and personalities, and to create an understanding for the social context. Brief insights into common methods of analysis, backed up by historical details, help the reader gain an understanding of the history of structural mechanics from the standpoint of modern engineering practice. A total of 175 brief biographies of important personalities in civil and structural engineering as well as structural mechanics plus an extensive bibliography round off this work.
Publisher: John Wiley & Sons
ISBN: 3433601348
Category : Technology & Engineering
Languages : en
Pages : 864
Book Description
This book traces the evolution of theory of structures and strength of materials - the development of the geometrical thinking of the Renaissance to become the fundamental engineering science discipline rooted in classical mechanics. Starting with the strength experiments of Leonardo da Vinci and Galileo, the author examines the emergence of individual structural analysis methods and their formation into theory of structures in the 19th century. For the first time, a book of this kind outlines the development from classical theory of structures to the structural mechanics and computational mechanics of the 20th century. In doing so, the author has managed to bring alive the differences between the players with respect to their engineering and scientific profiles and personalities, and to create an understanding for the social context. Brief insights into common methods of analysis, backed up by historical details, help the reader gain an understanding of the history of structural mechanics from the standpoint of modern engineering practice. A total of 175 brief biographies of important personalities in civil and structural engineering as well as structural mechanics plus an extensive bibliography round off this work.
Configurational Mechanics of Materials
Author: Reinhold Kienzler
Publisher: Springer
ISBN: 3709125766
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
These lecture notes cover numerous elements of configurational mechanics, including mathematical foundations, linear and nonlinear elasticity and continuum mechanics, coupled fields, fracture mechanics, as well as strength of materials.
Publisher: Springer
ISBN: 3709125766
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
These lecture notes cover numerous elements of configurational mechanics, including mathematical foundations, linear and nonlinear elasticity and continuum mechanics, coupled fields, fracture mechanics, as well as strength of materials.
Tissue Mechanics
Author: Stephen C. Cowin
Publisher: Springer Science & Business Media
ISBN: 0387499857
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
The structures of living tissues are continually changing due to growth and response to the tissue environment, including the mechanical environment. Tissue Mechanics is an in-depth look at the mechanics of tissues. Tissue Mechanics describes the nature of the composite components of a tissue, the cellular processes that produce these constituents, the assembly of the constituents into a hierarchical structure, and the behavior of the tissue’s composite structure in the adaptation to its mechanical environment. Organized as a textbook for the student needing to acquire the core competencies, Tissue Mechanics will meet the demands of advanced undergraduate or graduate coursework in Biomedical Engineering, as well as, Chemical, Civil, and Mechanical Engineering. Key features: Detailed Illustrations Example problems, including problems at the end of sections A separate solutions manual available for course instructors A website (http://tissue-mechanics.com/) that has been established to provide supplemental material for the book, including downloadable additional chapters on specific tissues, downloadable PowerPoint presentations of all the book's chapters, and additional exercises and examples for the existing chapters. About the Authors: Stephen C. Cowin is a City University of New York Distinguished Professor, Departments of Biomedical and Mechanical Engineering, City College of the City University of New York and also an Adjunct Professor of Orthopaedics, at the Mt. Sinai School of Medicine in New York, New York. In 1985 he received the Society of Tulane Engineers and Lee H. Johnson Award for Teaching Excellence and a recipient of the European Society of Biomechanics Research Award in 1994. In 1999 he received the H. R. Lissner medal of the ASME for contributions to biomedical engineering. In 2004 he was elected to the National Academy of Engineering (NAE) and he also received the Maurice A. Biot medal of the American Society of Civil Engineers (ASCE). Stephen B. Doty is a Senior Scientist at Hospital for Special Surgery, New York, New York and Adjunct Professor, School of Dental and Oral Surgery, Columbia University, New York, NY. He has over 100 publications in the field of anatomy, developmental biology, and the physiology of skeletal and connective tissues. His honors include several commendations for participation in the Russian/NASA spaceflights, the Spacelab Life Science NASA spaceflights, and numerous Shuttle missions that studied the influence of spaceflight on skeletal physiology. He presently is on the scientific advisory board of the National Space Biomedical Research Institute, Houston, Texas.
Publisher: Springer Science & Business Media
ISBN: 0387499857
Category : Technology & Engineering
Languages : en
Pages : 685
Book Description
The structures of living tissues are continually changing due to growth and response to the tissue environment, including the mechanical environment. Tissue Mechanics is an in-depth look at the mechanics of tissues. Tissue Mechanics describes the nature of the composite components of a tissue, the cellular processes that produce these constituents, the assembly of the constituents into a hierarchical structure, and the behavior of the tissue’s composite structure in the adaptation to its mechanical environment. Organized as a textbook for the student needing to acquire the core competencies, Tissue Mechanics will meet the demands of advanced undergraduate or graduate coursework in Biomedical Engineering, as well as, Chemical, Civil, and Mechanical Engineering. Key features: Detailed Illustrations Example problems, including problems at the end of sections A separate solutions manual available for course instructors A website (http://tissue-mechanics.com/) that has been established to provide supplemental material for the book, including downloadable additional chapters on specific tissues, downloadable PowerPoint presentations of all the book's chapters, and additional exercises and examples for the existing chapters. About the Authors: Stephen C. Cowin is a City University of New York Distinguished Professor, Departments of Biomedical and Mechanical Engineering, City College of the City University of New York and also an Adjunct Professor of Orthopaedics, at the Mt. Sinai School of Medicine in New York, New York. In 1985 he received the Society of Tulane Engineers and Lee H. Johnson Award for Teaching Excellence and a recipient of the European Society of Biomechanics Research Award in 1994. In 1999 he received the H. R. Lissner medal of the ASME for contributions to biomedical engineering. In 2004 he was elected to the National Academy of Engineering (NAE) and he also received the Maurice A. Biot medal of the American Society of Civil Engineers (ASCE). Stephen B. Doty is a Senior Scientist at Hospital for Special Surgery, New York, New York and Adjunct Professor, School of Dental and Oral Surgery, Columbia University, New York, NY. He has over 100 publications in the field of anatomy, developmental biology, and the physiology of skeletal and connective tissues. His honors include several commendations for participation in the Russian/NASA spaceflights, the Spacelab Life Science NASA spaceflights, and numerous Shuttle missions that studied the influence of spaceflight on skeletal physiology. He presently is on the scientific advisory board of the National Space Biomedical Research Institute, Houston, Texas.
Non-Classical Continuum Mechanics
Author: Gérard A. Maugin
Publisher: Springer
ISBN: 9811024340
Category : Science
Languages : en
Pages : 268
Book Description
This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, ever y entry is followed by a cross-reference to other related subject entries in the dictionary.
Publisher: Springer
ISBN: 9811024340
Category : Science
Languages : en
Pages : 268
Book Description
This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, ever y entry is followed by a cross-reference to other related subject entries in the dictionary.
Continuum Mechanics Through the Eighteenth and Nineteenth Centuries
Author: Gérard A. Maugin
Publisher: Springer Science & Business Media
ISBN: 3319053744
Category : Science
Languages : en
Pages : 275
Book Description
Conceived as a series of more or less autonomous essays, the present book critically exposes the initial developments of continuum thermo-mechanics in a post Newtonian period extending from the creative works of the Bernoullis to the First World war, i.e., roughly during first the “Age of reason” and next the “Birth of the modern world”. The emphasis is rightly placed on the original contributions from the “Continental” scientists (the Bernoulli family, Euler, d’Alembert, Lagrange, Cauchy, Piola, Duhamel, Neumann, Clebsch, Kirchhoff, Helmholtz, Saint-Venant, Boussinesq, the Cosserat brothers, Caratheodory) in competition with their British peers (Green, Kelvin, Stokes, Maxwell, Rayleigh, Love,..). It underlines the main breakthroughs as well as the secondary ones. It highlights the role of scientists who left essential prints in this history of scientific ideas. The book shows how the formidable developments that blossomed in the twentieth century (and perused in a previous book of the author in the same Springer Series: “Continuum Mechanics through the Twentieth Century”, Springer 2013) found rich compost in the constructive foundational achievements of the eighteenth and nineteenth centuries. The pre-WWI situation is well summarized by a thorough analysis of treatises (Appell, Hellinger) published at that time. English translations by the author of most critical texts in French or German are given to the benefit of the readers.
Publisher: Springer Science & Business Media
ISBN: 3319053744
Category : Science
Languages : en
Pages : 275
Book Description
Conceived as a series of more or less autonomous essays, the present book critically exposes the initial developments of continuum thermo-mechanics in a post Newtonian period extending from the creative works of the Bernoullis to the First World war, i.e., roughly during first the “Age of reason” and next the “Birth of the modern world”. The emphasis is rightly placed on the original contributions from the “Continental” scientists (the Bernoulli family, Euler, d’Alembert, Lagrange, Cauchy, Piola, Duhamel, Neumann, Clebsch, Kirchhoff, Helmholtz, Saint-Venant, Boussinesq, the Cosserat brothers, Caratheodory) in competition with their British peers (Green, Kelvin, Stokes, Maxwell, Rayleigh, Love,..). It underlines the main breakthroughs as well as the secondary ones. It highlights the role of scientists who left essential prints in this history of scientific ideas. The book shows how the formidable developments that blossomed in the twentieth century (and perused in a previous book of the author in the same Springer Series: “Continuum Mechanics through the Twentieth Century”, Springer 2013) found rich compost in the constructive foundational achievements of the eighteenth and nineteenth centuries. The pre-WWI situation is well summarized by a thorough analysis of treatises (Appell, Hellinger) published at that time. English translations by the author of most critical texts in French or German are given to the benefit of the readers.
Continuum Mechanics through the Ages - From the Renaissance to the Twentieth Century
Author: Gérard A. Maugin
Publisher: Springer
ISBN: 3319265938
Category : Science
Languages : en
Pages : 312
Book Description
Mixing scientific, historic and socio-economic vision, this unique book complements two previously published volumes on the history of continuum mechanics from this distinguished author. In this volume, Gérard A. Maugin looks at the period from the renaissance to the twentieth century and he includes an appraisal of the ever enduring competition between molecular and continuum modelling views. Chapters trace early works in hydraulics and fluid mechanics not covered in the other volumes and the author investigates experimental approaches, essentially before the introduction of a true concept of stress tensor. The treatment of such topics as the viscoelasticity of solids and plasticity, fracture theory, and the role of geometry as a cornerstone of the field, are all explored. Readers will find a kind of socio-historical appraisal of the seminal contributions by our direct masters in the second half of the twentieth century. The analysis of the teaching and research texts by Duhem, Poincaré and Hilbert on continuum mechanics is key: these provide the most valuable documentary basis on which a revival of continuum mechanics and its formalization were offered in the late twentieth century. Altogether, the three volumes offer a generous conspectus of the developments of continuum mechanics between the sixteenth century and the dawn of the twenty-first century. Mechanical engineers, applied mathematicians and physicists alike will all be interested in this work which appeals to all curious scientists for whom continuum mechanics as a vividly evolving science still has its own mysteries.
Publisher: Springer
ISBN: 3319265938
Category : Science
Languages : en
Pages : 312
Book Description
Mixing scientific, historic and socio-economic vision, this unique book complements two previously published volumes on the history of continuum mechanics from this distinguished author. In this volume, Gérard A. Maugin looks at the period from the renaissance to the twentieth century and he includes an appraisal of the ever enduring competition between molecular and continuum modelling views. Chapters trace early works in hydraulics and fluid mechanics not covered in the other volumes and the author investigates experimental approaches, essentially before the introduction of a true concept of stress tensor. The treatment of such topics as the viscoelasticity of solids and plasticity, fracture theory, and the role of geometry as a cornerstone of the field, are all explored. Readers will find a kind of socio-historical appraisal of the seminal contributions by our direct masters in the second half of the twentieth century. The analysis of the teaching and research texts by Duhem, Poincaré and Hilbert on continuum mechanics is key: these provide the most valuable documentary basis on which a revival of continuum mechanics and its formalization were offered in the late twentieth century. Altogether, the three volumes offer a generous conspectus of the developments of continuum mechanics between the sixteenth century and the dawn of the twenty-first century. Mechanical engineers, applied mathematicians and physicists alike will all be interested in this work which appeals to all curious scientists for whom continuum mechanics as a vividly evolving science still has its own mysteries.
Continuum Mechanics of Anisotropic Materials
Author: Stephen C. Cowin
Publisher: Springer Science & Business Media
ISBN: 146145025X
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.
Publisher: Springer Science & Business Media
ISBN: 146145025X
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.