Author: Francisco Torrens
Publisher: CRC Press
ISBN: 1000008320
Category : Medical
Languages : en
Pages : 216
Book Description
Biochemistry, Biophysics, and Molecular Chemistry: Applied Research and Interactions provides the background needed in biophysics and molecular chemistry and offers a great deal of advanced biophysical knowledge. It emphasizes the growing interrelatedness of molecular chemistry and biochemistry, and acquaints one with experimental methods of both disciplines. This book addresses some of the enormous advances in biochemistry, particularly in the areas of structural biology and bioinformatics, by providing a solid biochemical foundation that is rooted in chemistry. Topics include scientific integrity and ethics in the field; clinical translational research in cancer, diabetes, and cardiovascular disease; emerging drugs to treat neurodegenerative diseases; swine, avian, and human flu; the use of big data in artificial knowledge in the field; bioinformatic insights on molecular chemistry; and much more.
Biochemistry, Biophysics, and Molecular Chemistry
Author: Francisco Torrens
Publisher: CRC Press
ISBN: 1000008320
Category : Medical
Languages : en
Pages : 216
Book Description
Biochemistry, Biophysics, and Molecular Chemistry: Applied Research and Interactions provides the background needed in biophysics and molecular chemistry and offers a great deal of advanced biophysical knowledge. It emphasizes the growing interrelatedness of molecular chemistry and biochemistry, and acquaints one with experimental methods of both disciplines. This book addresses some of the enormous advances in biochemistry, particularly in the areas of structural biology and bioinformatics, by providing a solid biochemical foundation that is rooted in chemistry. Topics include scientific integrity and ethics in the field; clinical translational research in cancer, diabetes, and cardiovascular disease; emerging drugs to treat neurodegenerative diseases; swine, avian, and human flu; the use of big data in artificial knowledge in the field; bioinformatic insights on molecular chemistry; and much more.
Publisher: CRC Press
ISBN: 1000008320
Category : Medical
Languages : en
Pages : 216
Book Description
Biochemistry, Biophysics, and Molecular Chemistry: Applied Research and Interactions provides the background needed in biophysics and molecular chemistry and offers a great deal of advanced biophysical knowledge. It emphasizes the growing interrelatedness of molecular chemistry and biochemistry, and acquaints one with experimental methods of both disciplines. This book addresses some of the enormous advances in biochemistry, particularly in the areas of structural biology and bioinformatics, by providing a solid biochemical foundation that is rooted in chemistry. Topics include scientific integrity and ethics in the field; clinical translational research in cancer, diabetes, and cardiovascular disease; emerging drugs to treat neurodegenerative diseases; swine, avian, and human flu; the use of big data in artificial knowledge in the field; bioinformatic insights on molecular chemistry; and much more.
Methods in Molecular Biophysics
Author: Nathan R. Zaccai
Publisher: Cambridge University Press
ISBN: 1108508804
Category : Science
Languages : en
Pages : 710
Book Description
Current techniques for studying biological macromolecules and their interactions are based on the application of physical methods, ranging from classical thermodynamics to more recently developed techniques for the detection and manipulation of single molecules. Reflecting the advances made in biophysics research over the past decade, and now including a new section on medical imaging, this new edition describes the physical methods used in modern biology. All key techniques are covered, including mass spectrometry, hydrodynamics, microscopy and imaging, diffraction and spectroscopy, electron microscopy, molecular dynamics simulations and nuclear magnetic resonance. Each method is explained in detail using examples of real-world applications. Short asides are provided throughout to ensure that explanations are accessible to life scientists, physicists and those with medical backgrounds. The book remains an unparalleled and comprehensive resource for graduate students of biophysics and medical physics in science and medical schools, as well as for research scientists looking for an introduction to techniques from across this interdisciplinary field.
Publisher: Cambridge University Press
ISBN: 1108508804
Category : Science
Languages : en
Pages : 710
Book Description
Current techniques for studying biological macromolecules and their interactions are based on the application of physical methods, ranging from classical thermodynamics to more recently developed techniques for the detection and manipulation of single molecules. Reflecting the advances made in biophysics research over the past decade, and now including a new section on medical imaging, this new edition describes the physical methods used in modern biology. All key techniques are covered, including mass spectrometry, hydrodynamics, microscopy and imaging, diffraction and spectroscopy, electron microscopy, molecular dynamics simulations and nuclear magnetic resonance. Each method is explained in detail using examples of real-world applications. Short asides are provided throughout to ensure that explanations are accessible to life scientists, physicists and those with medical backgrounds. The book remains an unparalleled and comprehensive resource for graduate students of biophysics and medical physics in science and medical schools, as well as for research scientists looking for an introduction to techniques from across this interdisciplinary field.
Computational Biochemistry and Biophysics
Author: Oren M. Becker
Publisher: CRC Press
ISBN: 9780203903827
Category : Medical
Languages : en
Pages : 534
Book Description
Covering theoretical methods and computational techniques in biomolecular research, this book focuses on approaches for the treatment of macromolecules, including proteins, nucleic acids, and bilayer membranes. It uses concepts in free energy calculations, conformational analysis, reaction rates, and transition pathways to calculate and interpret b
Publisher: CRC Press
ISBN: 9780203903827
Category : Medical
Languages : en
Pages : 534
Book Description
Covering theoretical methods and computational techniques in biomolecular research, this book focuses on approaches for the treatment of macromolecules, including proteins, nucleic acids, and bilayer membranes. It uses concepts in free energy calculations, conformational analysis, reaction rates, and transition pathways to calculate and interpret b
Biophysics
Author: W. Hoppe
Publisher: Springer Science & Business Media
ISBN: 3642688772
Category : Science
Languages : en
Pages : 967
Book Description
What is biophysics? As with all subjects which straddle traditional boundaries between fields, it eludes a precise definition. Furthermore, it is impossible to do biophysics without having a certain foundation of knowledge in biology, physics, physical chemistry, chemistry and biochemistry. One approach to a biophysics textbook would be to refer the student to the literature of these neighboring fields, and to leave the selection of the appropriate supplementary material up to the student. The editors of this volume are of the opinion that it is more useful and less time-consuming to present a selection of the supplementary knowledge, in concentrated form, together with the subject matter specific to biophysics. The reader will thus find in this book introductions to such subjects as the structure and function of the cell, the chemical structure of biogenic macromolecules, and even theoretical chemistry. What, indeed, is biophysics? Must we consider it to include physiology, electromedicine, radiation medicine, etc. ? The field has evolved continuously in recent years. Molecular understanding oflife processes has come more and more to the fore. Just as the field of molecular physics has developed to describe structures and processes in the realm of non-living systems, there has been a corresponding development of molecular biophysics.
Publisher: Springer Science & Business Media
ISBN: 3642688772
Category : Science
Languages : en
Pages : 967
Book Description
What is biophysics? As with all subjects which straddle traditional boundaries between fields, it eludes a precise definition. Furthermore, it is impossible to do biophysics without having a certain foundation of knowledge in biology, physics, physical chemistry, chemistry and biochemistry. One approach to a biophysics textbook would be to refer the student to the literature of these neighboring fields, and to leave the selection of the appropriate supplementary material up to the student. The editors of this volume are of the opinion that it is more useful and less time-consuming to present a selection of the supplementary knowledge, in concentrated form, together with the subject matter specific to biophysics. The reader will thus find in this book introductions to such subjects as the structure and function of the cell, the chemical structure of biogenic macromolecules, and even theoretical chemistry. What, indeed, is biophysics? Must we consider it to include physiology, electromedicine, radiation medicine, etc. ? The field has evolved continuously in recent years. Molecular understanding oflife processes has come more and more to the fore. Just as the field of molecular physics has developed to describe structures and processes in the realm of non-living systems, there has been a corresponding development of molecular biophysics.
Theoretical Biochemistry & Molecular Biophysics
Author: David L. Beveridge
Publisher: Adenine Press, Incorporated
ISBN: 9780940030282
Category : Biochemistry
Languages : en
Pages : 462
Book Description
Publisher: Adenine Press, Incorporated
ISBN: 9780940030282
Category : Biochemistry
Languages : en
Pages : 462
Book Description
Fundamentals and Techniques of Biophysics and Molecular Biology
Author: Pranav Kumar
Publisher: Pathfinder Publication unit of PAPL
ISBN: 938047315X
Category : Science
Languages : en
Pages : 115
Book Description
Fundamentals and Techniques of Biophysics and Molecular Biology textbook has the primary goal to teach students about theoretical principles and applications of the key biophysical and molecular methods used in biochemistry and molecular biology. A substantial theoretical basis has been covered to understand key experimental techniques such as Chromatography, Electrophoresis, Spectroscopy, Mass spectrometry, Centrifugation, Microscopy, Flow cytometry, Chromatin immunoprecipitation, Immunotechniques, FRET and FRAP, Polymerase chain reaction, Phage display, Yeast two-hybrid assay, DNA sequencing, Biosensors, CRISPR/Cas systems so that students can make appropriate choices and efficient use of techniques. The most significant feature of this book is its clear, up-to-date and accurate explanations of mechanisms, rather than the mere description of facts and events. This book is published by Pathfinder Publication, New Delhi, India.
Publisher: Pathfinder Publication unit of PAPL
ISBN: 938047315X
Category : Science
Languages : en
Pages : 115
Book Description
Fundamentals and Techniques of Biophysics and Molecular Biology textbook has the primary goal to teach students about theoretical principles and applications of the key biophysical and molecular methods used in biochemistry and molecular biology. A substantial theoretical basis has been covered to understand key experimental techniques such as Chromatography, Electrophoresis, Spectroscopy, Mass spectrometry, Centrifugation, Microscopy, Flow cytometry, Chromatin immunoprecipitation, Immunotechniques, FRET and FRAP, Polymerase chain reaction, Phage display, Yeast two-hybrid assay, DNA sequencing, Biosensors, CRISPR/Cas systems so that students can make appropriate choices and efficient use of techniques. The most significant feature of this book is its clear, up-to-date and accurate explanations of mechanisms, rather than the mere description of facts and events. This book is published by Pathfinder Publication, New Delhi, India.
Biomolecular Thermodynamics
Author: Douglas Barrick
Publisher: CRC Press
ISBN: 131536302X
Category : Medical
Languages : en
Pages : 553
Book Description
"an impressive text that addresses a glaring gap in the teaching of physical chemistry, being specifically focused on biologically-relevant systems along with a practical focus.... the ample problems and tutorials throughout are much appreciated." –Tobin R. Sosnick, Professor and Chair of Biochemistry and Molecular Biology, University of Chicago "Presents both the concepts and equations associated with statistical thermodynamics in a unique way that is at visual, intuitive, and rigorous. This approach will greatly benefit students at all levels." –Vijay S. Pande, Henry Dreyfus Professor of Chemistry, Stanford University "a masterful tour de force.... Barrick's rigor and scholarship come through in every chapter." –Rohit V. Pappu, Edwin H. Murty Professor of Engineering, Washington University in St. Louis This book provides a comprehensive, contemporary introduction to developing a quantitative understanding of how biological macromolecules behave using classical and statistical thermodynamics. The author focuses on practical skills needed to apply the underlying equations in real life examples. The text develops mechanistic models, showing how they connect to thermodynamic observables, presenting simulations of thermodynamic behavior, and analyzing experimental data. The reader is presented with plenty of exercises and problems to facilitate hands-on learning through mathematical simulation. Douglas E. Barrick is a professor in the Department of Biophysics at Johns Hopkins University. He earned his Ph.D. in biochemistry from Stanford University, and a Ph.D. in biophysics and structural biology from the University of Oregon.
Publisher: CRC Press
ISBN: 131536302X
Category : Medical
Languages : en
Pages : 553
Book Description
"an impressive text that addresses a glaring gap in the teaching of physical chemistry, being specifically focused on biologically-relevant systems along with a practical focus.... the ample problems and tutorials throughout are much appreciated." –Tobin R. Sosnick, Professor and Chair of Biochemistry and Molecular Biology, University of Chicago "Presents both the concepts and equations associated with statistical thermodynamics in a unique way that is at visual, intuitive, and rigorous. This approach will greatly benefit students at all levels." –Vijay S. Pande, Henry Dreyfus Professor of Chemistry, Stanford University "a masterful tour de force.... Barrick's rigor and scholarship come through in every chapter." –Rohit V. Pappu, Edwin H. Murty Professor of Engineering, Washington University in St. Louis This book provides a comprehensive, contemporary introduction to developing a quantitative understanding of how biological macromolecules behave using classical and statistical thermodynamics. The author focuses on practical skills needed to apply the underlying equations in real life examples. The text develops mechanistic models, showing how they connect to thermodynamic observables, presenting simulations of thermodynamic behavior, and analyzing experimental data. The reader is presented with plenty of exercises and problems to facilitate hands-on learning through mathematical simulation. Douglas E. Barrick is a professor in the Department of Biophysics at Johns Hopkins University. He earned his Ph.D. in biochemistry from Stanford University, and a Ph.D. in biophysics and structural biology from the University of Oregon.
Molecular and Cellular Biophysics
Author: Meyer B. Jackson
Publisher: Cambridge University Press
ISBN: 9780521624411
Category : Medical
Languages : en
Pages : 536
Book Description
Molecular and Cellular Biophysics provides advanced undergraduate and graduate students with a foundation in the basic concepts of biophysics. Students who have taken physical chemistry and calculus courses will find this book an accessible and valuable aid in learning how these concepts can be used in biological research. The text provides a rigorous treatment of the fundamental theories in biophysics and illustrates their application with examples. Conformational transitions of proteins are studied first using thermodynamics, and subsequently with kinetics. Allosteric theory is developed as the synthesis of conformational transitions and association reactions. Basic ideas of thermodynamics and kinetics are applied to topics such as protein folding, enzyme catalysis and ion channel permeation. These concepts are then used as the building blocks in a treatment of membrane excitability. Through these examples, students will gain an understanding of the general importance and broad applicability of biophysical principles to biological problems.
Publisher: Cambridge University Press
ISBN: 9780521624411
Category : Medical
Languages : en
Pages : 536
Book Description
Molecular and Cellular Biophysics provides advanced undergraduate and graduate students with a foundation in the basic concepts of biophysics. Students who have taken physical chemistry and calculus courses will find this book an accessible and valuable aid in learning how these concepts can be used in biological research. The text provides a rigorous treatment of the fundamental theories in biophysics and illustrates their application with examples. Conformational transitions of proteins are studied first using thermodynamics, and subsequently with kinetics. Allosteric theory is developed as the synthesis of conformational transitions and association reactions. Basic ideas of thermodynamics and kinetics are applied to topics such as protein folding, enzyme catalysis and ion channel permeation. These concepts are then used as the building blocks in a treatment of membrane excitability. Through these examples, students will gain an understanding of the general importance and broad applicability of biophysical principles to biological problems.
Biophysics
Author: Roland Glaser
Publisher: Springer Science & Business Media
ISBN: 9783540670889
Category : Science
Languages : en
Pages : 388
Book Description
Biophysics is the science of physical principles underlying the "phenomenon of life" on all levels of organization. This book begins by explaining molecular and ionic interactions, movements, excitation and energy transfer, and the self-organization of supramolecular structures. Then the biological organism is introduced as a non-equilibrium system. Finally, system analyses are discussed as well as environmental biophysics, ecological interactions, growth, differentiation, and evolution. A growing number of applications in biotechnology are based on these biophysical concepts.
Publisher: Springer Science & Business Media
ISBN: 9783540670889
Category : Science
Languages : en
Pages : 388
Book Description
Biophysics is the science of physical principles underlying the "phenomenon of life" on all levels of organization. This book begins by explaining molecular and ionic interactions, movements, excitation and energy transfer, and the self-organization of supramolecular structures. Then the biological organism is introduced as a non-equilibrium system. Finally, system analyses are discussed as well as environmental biophysics, ecological interactions, growth, differentiation, and evolution. A growing number of applications in biotechnology are based on these biophysical concepts.
Biomolecular Kinetics
Author: Clive R. Bagshaw
Publisher: CRC Press
ISBN: 1351646664
Category : Medical
Languages : en
Pages : 883
Book Description
"a gem of a textbook which manages to produce a genuinely fresh, concise yet comprehensive guide" –Mark Leake, University of York "destined to become a standard reference.... Not just a ‘how to’ handbook but also an accessible primer in the essentials of kinetic theory and practice." –Michael Geeves, University of Kent "covers the entire spectrum of approaches, from the traditional steady state methods to a thorough account of transient kinetics and rapid reaction techniques, and then on to the new single molecule techniques" –Stephen Halford, University of Bristol This illustrated treatment explains the methods used for measuring how much a reaction gets speeded up, as well as the framework for solving problems such as ligand binding and macromolecular folding, using the step-by-step approach of numerical integration. It is a thoroughly modern text, reflecting the recent ability to observe reactions at the single-molecule level, as well as advances in microfluidics which have given rise to femtoscale studies. Kinetics is more important now than ever, and this book is a vibrant and approachable entry for anyone who wants to understand mechanism using transient or single molecule kinetics without getting bogged down in advanced mathematics. Clive R. Bagshaw is Emeritus Professor at the University of Leicester, U.K., and Research Associate at the University of California at Santa Cruz, U.S.A.
Publisher: CRC Press
ISBN: 1351646664
Category : Medical
Languages : en
Pages : 883
Book Description
"a gem of a textbook which manages to produce a genuinely fresh, concise yet comprehensive guide" –Mark Leake, University of York "destined to become a standard reference.... Not just a ‘how to’ handbook but also an accessible primer in the essentials of kinetic theory and practice." –Michael Geeves, University of Kent "covers the entire spectrum of approaches, from the traditional steady state methods to a thorough account of transient kinetics and rapid reaction techniques, and then on to the new single molecule techniques" –Stephen Halford, University of Bristol This illustrated treatment explains the methods used for measuring how much a reaction gets speeded up, as well as the framework for solving problems such as ligand binding and macromolecular folding, using the step-by-step approach of numerical integration. It is a thoroughly modern text, reflecting the recent ability to observe reactions at the single-molecule level, as well as advances in microfluidics which have given rise to femtoscale studies. Kinetics is more important now than ever, and this book is a vibrant and approachable entry for anyone who wants to understand mechanism using transient or single molecule kinetics without getting bogged down in advanced mathematics. Clive R. Bagshaw is Emeritus Professor at the University of Leicester, U.K., and Research Associate at the University of California at Santa Cruz, U.S.A.