Author: Ahmad Borzou
Publisher: Springer
ISBN: 3319696327
Category : Science
Languages : en
Pages : 120
Book Description
This thesis represents a unique mix of theoretical work discussing the Lorentz theory of gravity and experimental work searching for supersymmetry with the Compact Muon Solenoid experiment at the Large Hadron Collider. It begins by reviewing a set of widely-discussed theoretical solutions to the cosmological constant problem, including a natural solution provided by the recently developed Lorentz gauge theory of gravity. The Schwartzschild metric, de Sitter space, and quantum versions of the theory are also discussed. The thesis then looks to supersymmetry for an alternative solution. The idea behind supersymmetry is reviewed and an experimental search for supersymmetry is presented. A major contribution was to estimate one of the most significant backgrounds in this search, which arises from top-antitop quark pair production or W boson production in association with multiple jets where the W boson decays into the hadronically-decaying tau leptons and neutrinos. This background was estimated through a novel method involving kinematically analogous events but including a well-measured muon. This search significantly extends limits on supersymmetric partners of gluons from previous searches.
Theoretical and Experimental Approaches to Dark Energy and the Cosmological Constant Problem
Author: Ahmad Borzou
Publisher: Springer
ISBN: 3319696327
Category : Science
Languages : en
Pages : 120
Book Description
This thesis represents a unique mix of theoretical work discussing the Lorentz theory of gravity and experimental work searching for supersymmetry with the Compact Muon Solenoid experiment at the Large Hadron Collider. It begins by reviewing a set of widely-discussed theoretical solutions to the cosmological constant problem, including a natural solution provided by the recently developed Lorentz gauge theory of gravity. The Schwartzschild metric, de Sitter space, and quantum versions of the theory are also discussed. The thesis then looks to supersymmetry for an alternative solution. The idea behind supersymmetry is reviewed and an experimental search for supersymmetry is presented. A major contribution was to estimate one of the most significant backgrounds in this search, which arises from top-antitop quark pair production or W boson production in association with multiple jets where the W boson decays into the hadronically-decaying tau leptons and neutrinos. This background was estimated through a novel method involving kinematically analogous events but including a well-measured muon. This search significantly extends limits on supersymmetric partners of gluons from previous searches.
Publisher: Springer
ISBN: 3319696327
Category : Science
Languages : en
Pages : 120
Book Description
This thesis represents a unique mix of theoretical work discussing the Lorentz theory of gravity and experimental work searching for supersymmetry with the Compact Muon Solenoid experiment at the Large Hadron Collider. It begins by reviewing a set of widely-discussed theoretical solutions to the cosmological constant problem, including a natural solution provided by the recently developed Lorentz gauge theory of gravity. The Schwartzschild metric, de Sitter space, and quantum versions of the theory are also discussed. The thesis then looks to supersymmetry for an alternative solution. The idea behind supersymmetry is reviewed and an experimental search for supersymmetry is presented. A major contribution was to estimate one of the most significant backgrounds in this search, which arises from top-antitop quark pair production or W boson production in association with multiple jets where the W boson decays into the hadronically-decaying tau leptons and neutrinos. This background was estimated through a novel method involving kinematically analogous events but including a well-measured muon. This search significantly extends limits on supersymmetric partners of gluons from previous searches.
Connecting Quarks with the Cosmos
Author: National Research Council
Publisher: National Academies Press
ISBN: 030917113X
Category : Science
Languages : en
Pages : 222
Book Description
Advances made by physicists in understanding matter, space, and time and by astronomers in understanding the universe as a whole have closely intertwined the question being asked about the universe at its two extremesâ€"the very large and the very small. This report identifies 11 key questions that have a good chance to be answered in the next decade. It urges that a new research strategy be created that brings to bear the techniques of both astronomy and sub-atomic physics in a cross-disciplinary way to address these questions. The report presents seven recommendations to facilitate the necessary research and development coordination. These recommendations identify key priorities for future scientific projects critical for realizing these scientific opportunities.
Publisher: National Academies Press
ISBN: 030917113X
Category : Science
Languages : en
Pages : 222
Book Description
Advances made by physicists in understanding matter, space, and time and by astronomers in understanding the universe as a whole have closely intertwined the question being asked about the universe at its two extremesâ€"the very large and the very small. This report identifies 11 key questions that have a good chance to be answered in the next decade. It urges that a new research strategy be created that brings to bear the techniques of both astronomy and sub-atomic physics in a cross-disciplinary way to address these questions. The report presents seven recommendations to facilitate the necessary research and development coordination. These recommendations identify key priorities for future scientific projects critical for realizing these scientific opportunities.
Dark Energy
Author: Luca Amendola
Publisher: Cambridge University Press
ISBN: 0521516005
Category : Science
Languages : en
Pages : 507
Book Description
Introducing the theoretical ideas, observational methods and results in dark energy, this textbook is a thorough introduction to dark energy for graduate courses.
Publisher: Cambridge University Press
ISBN: 0521516005
Category : Science
Languages : en
Pages : 507
Book Description
Introducing the theoretical ideas, observational methods and results in dark energy, this textbook is a thorough introduction to dark energy for graduate courses.
Sixteenth Marcel Grossmann Meeting, The: On Recent Developments In Theoretical And Experimental General Relativity, Astrophysics, And Relativistic Field Theories - Proceedings Of The Mg16 Meeting On General Relativity (In 4 Volumes)
Author: Remo Ruffini
Publisher: World Scientific
ISBN: 9811269785
Category : Science
Languages : en
Pages : 4880
Book Description
The proceedings of MG16 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 46 plenary presentations, 3 public lectures, 5 round tables and 81 parallel sessions arranged during the intense six-day online meeting. All talks were recorded and are available on the ICRANet YouTube channel at the following link: www.icranet.org/video_mg16.These proceedings are a representative sample of the very many contributions made at the meeting. They contain 383 papers, among which 14 come from the plenary sessions.The material represented in these proceedings cover the following topics: accretion, active galactic nuclei, alternative theories of gravity, black holes (theory, observations and experiments), binaries, boson stars, cosmic microwave background, cosmic strings, dark energy and large scale structure, dark matter, education, exact solutions, early universe, fundamental interactions and stellar evolution, fast transients, gravitational waves, high energy physics, history of relativity, neutron stars, precision tests, quantum gravity, strong fields, and white dwarf; all of them represented by a large number of contributions.The online e-proceedings are published in an open access format.
Publisher: World Scientific
ISBN: 9811269785
Category : Science
Languages : en
Pages : 4880
Book Description
The proceedings of MG16 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 46 plenary presentations, 3 public lectures, 5 round tables and 81 parallel sessions arranged during the intense six-day online meeting. All talks were recorded and are available on the ICRANet YouTube channel at the following link: www.icranet.org/video_mg16.These proceedings are a representative sample of the very many contributions made at the meeting. They contain 383 papers, among which 14 come from the plenary sessions.The material represented in these proceedings cover the following topics: accretion, active galactic nuclei, alternative theories of gravity, black holes (theory, observations and experiments), binaries, boson stars, cosmic microwave background, cosmic strings, dark energy and large scale structure, dark matter, education, exact solutions, early universe, fundamental interactions and stellar evolution, fast transients, gravitational waves, high energy physics, history of relativity, neutron stars, precision tests, quantum gravity, strong fields, and white dwarf; all of them represented by a large number of contributions.The online e-proceedings are published in an open access format.
Twelfth Marcel Grossmann Meeting, The: On Recent Developments In Theoretical And Experimental General Relativity, Astrophysics And Relativistic Field Theories (In 3 Volumes) - Proceedings Of The Mg12 Meeting On General Relativity
Author: Remo Ruffini
Publisher: World Scientific
ISBN: 9814458031
Category : Science
Languages : en
Pages : 2657
Book Description
Marcel Grossmann Meetings are formed to further the development of General Relativity by promoting theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. In these meetings are discussed recent developments in classical and quantum gravity, general relativity and relativistic astrophysics, with major emphasis on mathematical foundations and physical predictions, with the main objective of gathering scientists from diverse backgrounds for deepening the understanding of spacetime structure and reviewing the status of test-experiments for Einstein's theory of gravitation. The range of topics is broad, going from the more abstract classical theory, quantum gravity and strings, to the more concrete relativistic astrophysics observations and modeling.The three volumes of the proceedings of MG12 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting includes 29 plenary talks stretched over 6 mornings, and 74 parallel sessions over 5 afternoons. Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theories, to precision tests of general relativity including progress towards the detection of gravitational waves, to relativistic astrophysics including such topics as gamma ray bursts, black hole physics both in our galaxy, in active galactic nuclei and in other galaxies, neutron stars, pulsar astrophysics, gravitational lensing effects, neutrino physics and ultra high energy cosmic rays. The rest of the volumes include parallel sessions on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, binary systems, radiative transfer, accretion disks, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, cosmic background radiation & observational cosmology, numerical relativity & algebraic computing, gravitational lensing, variable ';constants'; of nature, large scale structure, topology of the universe, brane-world cosmology, early universe models & cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, gamma ray burst modeling, supernovas, global structure, singularities, cosmic censorship, chaos, Einstein-Maxwell systems, inertial forces, gravitomagnetism, wormholes & time machines, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors & data analysis, precision gravitational measurements, history of relativity, quantum gravity & loop quantum gravity, Casimir effect, quantum cosmology, strings & branes, self-gravitating systems, gamma ray astronomy, cosmic rays, gamma ray bursts and quasars.
Publisher: World Scientific
ISBN: 9814458031
Category : Science
Languages : en
Pages : 2657
Book Description
Marcel Grossmann Meetings are formed to further the development of General Relativity by promoting theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. In these meetings are discussed recent developments in classical and quantum gravity, general relativity and relativistic astrophysics, with major emphasis on mathematical foundations and physical predictions, with the main objective of gathering scientists from diverse backgrounds for deepening the understanding of spacetime structure and reviewing the status of test-experiments for Einstein's theory of gravitation. The range of topics is broad, going from the more abstract classical theory, quantum gravity and strings, to the more concrete relativistic astrophysics observations and modeling.The three volumes of the proceedings of MG12 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting includes 29 plenary talks stretched over 6 mornings, and 74 parallel sessions over 5 afternoons. Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theories, to precision tests of general relativity including progress towards the detection of gravitational waves, to relativistic astrophysics including such topics as gamma ray bursts, black hole physics both in our galaxy, in active galactic nuclei and in other galaxies, neutron stars, pulsar astrophysics, gravitational lensing effects, neutrino physics and ultra high energy cosmic rays. The rest of the volumes include parallel sessions on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, binary systems, radiative transfer, accretion disks, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, cosmic background radiation & observational cosmology, numerical relativity & algebraic computing, gravitational lensing, variable ';constants'; of nature, large scale structure, topology of the universe, brane-world cosmology, early universe models & cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, gamma ray burst modeling, supernovas, global structure, singularities, cosmic censorship, chaos, Einstein-Maxwell systems, inertial forces, gravitomagnetism, wormholes & time machines, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors & data analysis, precision gravitational measurements, history of relativity, quantum gravity & loop quantum gravity, Casimir effect, quantum cosmology, strings & branes, self-gravitating systems, gamma ray astronomy, cosmic rays, gamma ray bursts and quasars.
Dark Matter and Dark Energy
Author: Sabino Matarrese
Publisher: Springer Science & Business Media
ISBN: 9048186854
Category : Science
Languages : en
Pages : 413
Book Description
This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift surveys and weak gravitational lensing observations. Included is a chapter reviewing extensively the direct and indirect methods of detection of the hypothetical dark matter particles. Also included is a self-contained introduction to the techniques and most important results of numerical (e.g. N-body) simulations in cosmology. " This volume will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology Physics and Mathematics, who are interested in cosmology, dark matter and dark energy.
Publisher: Springer Science & Business Media
ISBN: 9048186854
Category : Science
Languages : en
Pages : 413
Book Description
This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift surveys and weak gravitational lensing observations. Included is a chapter reviewing extensively the direct and indirect methods of detection of the hypothetical dark matter particles. Also included is a self-contained introduction to the techniques and most important results of numerical (e.g. N-body) simulations in cosmology. " This volume will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology Physics and Mathematics, who are interested in cosmology, dark matter and dark energy.
Relativity, Gravitation and World-structure
Author: Edward Arthur Milne
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 396
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 396
Book Description
The Extravagant Universe
Author: Robert P. Kirshner
Publisher: Princeton University Press
ISBN: 1400883806
Category : Science
Languages : en
Pages : 313
Book Description
The Extravagant Universe tells the story of a remarkable adventure of scientific discovery. One of the world's leading astronomers, Robert Kirshner, takes readers inside a lively research team on the quest that led them to an extraordinary cosmological discovery: the expansion of the universe is accelerating under the influence of a dark energy that makes space itself expand. In addition to sharing the story of this exciting discovery, Kirshner also brings the science up-to-date in a new epilogue. He explains how the idea of an accelerating universe--once a daring interpretation of sketchy data--is now the standard assumption in cosmology today. This measurement of dark energy--a quality of space itself that causes cosmic acceleration--points to a gaping hole in our understanding of fundamental physics. In 1917, Einstein proposed the "cosmological constant" to explain a static universe. When observations proved that the universe was expanding, he cast this early form of dark energy aside. But recent observations described first-hand in this book show that the cosmological constant--or something just like it--dominates the universe's mass and energy budget and determines its fate and shape. Warned by Einstein's blunder, and contradicted by the initial results of a competing research team, Kirshner and his colleagues were reluctant to accept their own result. But, convinced by evidence built on their hard-earned understanding of exploding stars, they announced their conclusion that the universe is accelerating in February 1998. Other lines of inquiry and parallel supernova research now support a new synthesis of a cosmos dominated by dark energy but also containing several forms of dark matter. We live in an extravagant universe with a surprising number of essential ingredients: the real universe we measure is not the simplest one we could imagine.
Publisher: Princeton University Press
ISBN: 1400883806
Category : Science
Languages : en
Pages : 313
Book Description
The Extravagant Universe tells the story of a remarkable adventure of scientific discovery. One of the world's leading astronomers, Robert Kirshner, takes readers inside a lively research team on the quest that led them to an extraordinary cosmological discovery: the expansion of the universe is accelerating under the influence of a dark energy that makes space itself expand. In addition to sharing the story of this exciting discovery, Kirshner also brings the science up-to-date in a new epilogue. He explains how the idea of an accelerating universe--once a daring interpretation of sketchy data--is now the standard assumption in cosmology today. This measurement of dark energy--a quality of space itself that causes cosmic acceleration--points to a gaping hole in our understanding of fundamental physics. In 1917, Einstein proposed the "cosmological constant" to explain a static universe. When observations proved that the universe was expanding, he cast this early form of dark energy aside. But recent observations described first-hand in this book show that the cosmological constant--or something just like it--dominates the universe's mass and energy budget and determines its fate and shape. Warned by Einstein's blunder, and contradicted by the initial results of a competing research team, Kirshner and his colleagues were reluctant to accept their own result. But, convinced by evidence built on their hard-earned understanding of exploding stars, they announced their conclusion that the universe is accelerating in February 1998. Other lines of inquiry and parallel supernova research now support a new synthesis of a cosmos dominated by dark energy but also containing several forms of dark matter. We live in an extravagant universe with a surprising number of essential ingredients: the real universe we measure is not the simplest one we could imagine.
Einstein's Physics
Author: Ta-Pei Cheng
Publisher: Oxford University Press
ISBN: 0199669910
Category : Biography & Autobiography
Languages : en
Pages : 371
Book Description
Many regard Albert Einstein as the greatest physicist since Newton. What exactly did he do that is so important in physics? We provide an introduction to his physics at a level accessible to an undergraduate physics student. All equations are worked out in detail from the beginning. Einstein's doctoral thesis and his Brownian motion paper were decisive contributions to our understanding of matter as composed of molecules and atoms. Einstein was one of the founding fathers of quantum theory: his photon proposal through the investigation of blackbody radiation, his quantum theory of photoelectric effect and specific heat, his calculation of radiation fluctuation giving the first statement of wave-particle duality, his introduction of probability in the description of quantum radiative transitions, and finally the quantum statistics and Bose-Einstein condensation. Einstein's special theory of relativity gave us the famous E=mc² relation and the new kinematics leading to the idea of the 4-dimensional spacetime as the arena in which physical events take place. Einstein's geometric theory of gravity, general relativity, extends Newton's theory to time-dependent and strong gravitational fields. It laid the ground work for the study of black holes and cosmology. This is a physics book with material presented in the historical context. We do not stop at Einstein's discovery, but carry the discussion onto some of the later advances: Bell's theorem, quantum field theory, gauge theories and Kaluza-Klein unification in a spacetime with an extra spatial dimension. Accessibility of the material to a modern-day reader is the goal of our presentation. Although the book is written with primarily a physics readership in mind (it can also function as a textbook), enough pedagogical support material is provided that anyone with a solid background in introductory physics can, with some effort, understand a good part of this presentation.
Publisher: Oxford University Press
ISBN: 0199669910
Category : Biography & Autobiography
Languages : en
Pages : 371
Book Description
Many regard Albert Einstein as the greatest physicist since Newton. What exactly did he do that is so important in physics? We provide an introduction to his physics at a level accessible to an undergraduate physics student. All equations are worked out in detail from the beginning. Einstein's doctoral thesis and his Brownian motion paper were decisive contributions to our understanding of matter as composed of molecules and atoms. Einstein was one of the founding fathers of quantum theory: his photon proposal through the investigation of blackbody radiation, his quantum theory of photoelectric effect and specific heat, his calculation of radiation fluctuation giving the first statement of wave-particle duality, his introduction of probability in the description of quantum radiative transitions, and finally the quantum statistics and Bose-Einstein condensation. Einstein's special theory of relativity gave us the famous E=mc² relation and the new kinematics leading to the idea of the 4-dimensional spacetime as the arena in which physical events take place. Einstein's geometric theory of gravity, general relativity, extends Newton's theory to time-dependent and strong gravitational fields. It laid the ground work for the study of black holes and cosmology. This is a physics book with material presented in the historical context. We do not stop at Einstein's discovery, but carry the discussion onto some of the later advances: Bell's theorem, quantum field theory, gauge theories and Kaluza-Klein unification in a spacetime with an extra spatial dimension. Accessibility of the material to a modern-day reader is the goal of our presentation. Although the book is written with primarily a physics readership in mind (it can also function as a textbook), enough pedagogical support material is provided that anyone with a solid background in introductory physics can, with some effort, understand a good part of this presentation.
The Physics of the Early Universe
Author: Eleftherios Papantonopoulos
Publisher: Springer Science & Business Media
ISBN: 9783540227120
Category : Science
Languages : en
Pages : 322
Book Description
The Physics of the Early Universe is an edited and expanded version of the lectures given at a recent summer school of the same name. Its aim is to present an advanced multi-authored textbook that meets the needs of both postgraduate students and young researchers interested in, or already working on, problems in cosmology and general relativity, with emphasis on the early universe. A particularly strong feature of the present work is the constructive-critical approach to the present mainstream theories, the careful assessment of some alternative approaches, and the overall balance between theoretical and observational considerations. As such, this book will also benefit experienced scientists and nonspecialists from related areas of research.
Publisher: Springer Science & Business Media
ISBN: 9783540227120
Category : Science
Languages : en
Pages : 322
Book Description
The Physics of the Early Universe is an edited and expanded version of the lectures given at a recent summer school of the same name. Its aim is to present an advanced multi-authored textbook that meets the needs of both postgraduate students and young researchers interested in, or already working on, problems in cosmology and general relativity, with emphasis on the early universe. A particularly strong feature of the present work is the constructive-critical approach to the present mainstream theories, the careful assessment of some alternative approaches, and the overall balance between theoretical and observational considerations. As such, this book will also benefit experienced scientists and nonspecialists from related areas of research.