Author: Jacques Balayla
Publisher: Springer Nature
ISBN: 3031714520
Category :
Languages : en
Pages : 315
Book Description
Theorems on the Prevalence Threshold and the Geometry of Screening Curves
Author: Jacques Balayla
Publisher: Springer Nature
ISBN: 3031714520
Category :
Languages : en
Pages : 315
Book Description
Publisher: Springer Nature
ISBN: 3031714520
Category :
Languages : en
Pages : 315
Book Description
Theorems on the Prevalence Threshold and the Geometry of Screening Curves
Author: Jacques Balayla
Publisher: Springer
ISBN: 9783031714511
Category : Medical
Languages : en
Pages : 0
Book Description
In Theorems on the Prevalence Threshold and the Geometry of Screening Curves, the author explores the mathematical underpinnings of screening and diagnostic testing, offering a unique and novel perspective which employs classical differential geometry and Bayesian theory to elucidate critical aspects of clinical decision-making. Taking the reader on a mathematical journey which bridges these seemingly unrelated worlds, the author presents a quantifiable framework on clinical judgement by introducing the “prevalence threshold” – a novel statistical parameter derived from Bayesian principles by means of the study of the geometry of screening curves. As the prevalence threshold demarcates the pretest probability level beyond which additional information ceases to significantly enhance the yield and reliability of a clinical assessment, it may serve as a benchmark for confidence in clinical decision-making. Given the theorems herein described, readers will find comprehensive analyses and insightful explorations of how these geometric concepts apply to real-world diagnostic scenarios, allowing the clinician to navigate clinical care more effectively at both the individual and public health levels.
Publisher: Springer
ISBN: 9783031714511
Category : Medical
Languages : en
Pages : 0
Book Description
In Theorems on the Prevalence Threshold and the Geometry of Screening Curves, the author explores the mathematical underpinnings of screening and diagnostic testing, offering a unique and novel perspective which employs classical differential geometry and Bayesian theory to elucidate critical aspects of clinical decision-making. Taking the reader on a mathematical journey which bridges these seemingly unrelated worlds, the author presents a quantifiable framework on clinical judgement by introducing the “prevalence threshold” – a novel statistical parameter derived from Bayesian principles by means of the study of the geometry of screening curves. As the prevalence threshold demarcates the pretest probability level beyond which additional information ceases to significantly enhance the yield and reliability of a clinical assessment, it may serve as a benchmark for confidence in clinical decision-making. Given the theorems herein described, readers will find comprehensive analyses and insightful explorations of how these geometric concepts apply to real-world diagnostic scenarios, allowing the clinician to navigate clinical care more effectively at both the individual and public health levels.
Bayesian Data Analysis, Third Edition
Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677
Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677
Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Game Theory, Alive
Author: Anna R. Karlin
Publisher: American Mathematical Soc.
ISBN: 1470419823
Category : Mathematics
Languages : en
Pages : 400
Book Description
We live in a highly connected world with multiple self-interested agents interacting and myriad opportunities for conflict and cooperation. The goal of game theory is to understand these opportunities. This book presents a rigorous introduction to the mathematics of game theory without losing sight of the joy of the subject. This is done by focusing on theoretical highlights (e.g., at least six Nobel Prize winning results are developed from scratch) and by presenting exciting connections of game theory to other fields such as computer science (algorithmic game theory), economics (auctions and matching markets), social choice (voting theory), biology (signaling and evolutionary stability), and learning theory. Both classical topics, such as zero-sum games, and modern topics, such as sponsored search auctions, are covered. Along the way, beautiful mathematical tools used in game theory are introduced, including convexity, fixed-point theorems, and probabilistic arguments. The book is appropriate for a first course in game theory at either the undergraduate or graduate level, whether in mathematics, economics, computer science, or statistics. The importance of game-theoretic thinking transcends the academic setting—for every action we take, we must consider not only its direct effects, but also how it influences the incentives of others.
Publisher: American Mathematical Soc.
ISBN: 1470419823
Category : Mathematics
Languages : en
Pages : 400
Book Description
We live in a highly connected world with multiple self-interested agents interacting and myriad opportunities for conflict and cooperation. The goal of game theory is to understand these opportunities. This book presents a rigorous introduction to the mathematics of game theory without losing sight of the joy of the subject. This is done by focusing on theoretical highlights (e.g., at least six Nobel Prize winning results are developed from scratch) and by presenting exciting connections of game theory to other fields such as computer science (algorithmic game theory), economics (auctions and matching markets), social choice (voting theory), biology (signaling and evolutionary stability), and learning theory. Both classical topics, such as zero-sum games, and modern topics, such as sponsored search auctions, are covered. Along the way, beautiful mathematical tools used in game theory are introduced, including convexity, fixed-point theorems, and probabilistic arguments. The book is appropriate for a first course in game theory at either the undergraduate or graduate level, whether in mathematics, economics, computer science, or statistics. The importance of game-theoretic thinking transcends the academic setting—for every action we take, we must consider not only its direct effects, but also how it influences the incentives of others.
Analysis of Neural Data
Author: Robert E. Kass
Publisher: Springer
ISBN: 1461496020
Category : Medical
Languages : en
Pages : 663
Book Description
Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.
Publisher: Springer
ISBN: 1461496020
Category : Medical
Languages : en
Pages : 663
Book Description
Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.
Signal Detection Theory and ROC-analysis
Author: James P. Egan
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 312
Book Description
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 312
Book Description
The Cambridge Dictionary of Statistics
Author: B. S. Everitt
Publisher: Cambridge University Press
ISBN: 9780521690270
Category : Mathematics
Languages : en
Pages : 0
Book Description
If you use statistics and need easy access to simple, reliable definitions and explanations of modern statistical concepts, then look no further than this dictionary. Over 3600 terms are defined, covering medical, survey, theoretical, and applied statistics, including computational aspects. Entries are provided for standard and specialized statistical software. In addition, short biographies of over 100 important statisticians are given. Definitions provide enough mathematical detail to clarify concepts and give standard formulae when these are helpful. The majority of definitions then give a reference to a book or article where the user can seek further or more specialized information, and many are accompanied by graphical material to aid understanding.
Publisher: Cambridge University Press
ISBN: 9780521690270
Category : Mathematics
Languages : en
Pages : 0
Book Description
If you use statistics and need easy access to simple, reliable definitions and explanations of modern statistical concepts, then look no further than this dictionary. Over 3600 terms are defined, covering medical, survey, theoretical, and applied statistics, including computational aspects. Entries are provided for standard and specialized statistical software. In addition, short biographies of over 100 important statisticians are given. Definitions provide enough mathematical detail to clarify concepts and give standard formulae when these are helpful. The majority of definitions then give a reference to a book or article where the user can seek further or more specialized information, and many are accompanied by graphical material to aid understanding.
Statistics in a Nutshell
Author: Sarah Boslaugh
Publisher: "O'Reilly Media, Inc."
ISBN: 1449316824
Category : Computers
Languages : en
Pages : 595
Book Description
A clear and concise introduction and reference for anyone new to the subject of statistics.
Publisher: "O'Reilly Media, Inc."
ISBN: 1449316824
Category : Computers
Languages : en
Pages : 595
Book Description
A clear and concise introduction and reference for anyone new to the subject of statistics.
Algorithms for Decision Making
Author: Mykel J. Kochenderfer
Publisher: MIT Press
ISBN: 0262370239
Category : Computers
Languages : en
Pages : 701
Book Description
A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.
Publisher: MIT Press
ISBN: 0262370239
Category : Computers
Languages : en
Pages : 701
Book Description
A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.
Bayesian Networks
Author: Olivier Pourret
Publisher: John Wiley & Sons
ISBN: 9780470994542
Category : Mathematics
Languages : en
Pages : 446
Book Description
Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.
Publisher: John Wiley & Sons
ISBN: 9780470994542
Category : Mathematics
Languages : en
Pages : 446
Book Description
Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.