Author: John Harrison
Publisher: Springer Science & Business Media
ISBN: 1447115910
Category : Computers
Languages : en
Pages : 193
Book Description
This book discusses the use of the real numbers in theorem proving. Typ ically, theorem provers only support a few 'discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of float ing point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We de scribe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and the formalization of a significant portion of real analysis. We also describe an advanced derived decision procedure for the 'Tarski subset' of real algebra as well as some more modest but practically useful tools for automating explicit calculations and routine linear arithmetic reasoning. Finally, we consider in more detail two interesting application areas. We discuss the desirability of combining the rigour of theorem provers with the power and convenience of computer algebra systems, and explain a method we have used in practice to achieve this. We then move on to the verification of floating point hardware. After a careful discussion of possible correctness specifications, we report on two case studies, one involving a transcendental function.
Theorem Proving with the Real Numbers
Author: John Harrison
Publisher: Springer Science & Business Media
ISBN: 1447115910
Category : Computers
Languages : en
Pages : 193
Book Description
This book discusses the use of the real numbers in theorem proving. Typ ically, theorem provers only support a few 'discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of float ing point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We de scribe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and the formalization of a significant portion of real analysis. We also describe an advanced derived decision procedure for the 'Tarski subset' of real algebra as well as some more modest but practically useful tools for automating explicit calculations and routine linear arithmetic reasoning. Finally, we consider in more detail two interesting application areas. We discuss the desirability of combining the rigour of theorem provers with the power and convenience of computer algebra systems, and explain a method we have used in practice to achieve this. We then move on to the verification of floating point hardware. After a careful discussion of possible correctness specifications, we report on two case studies, one involving a transcendental function.
Publisher: Springer Science & Business Media
ISBN: 1447115910
Category : Computers
Languages : en
Pages : 193
Book Description
This book discusses the use of the real numbers in theorem proving. Typ ically, theorem provers only support a few 'discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of float ing point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We de scribe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and the formalization of a significant portion of real analysis. We also describe an advanced derived decision procedure for the 'Tarski subset' of real algebra as well as some more modest but practically useful tools for automating explicit calculations and routine linear arithmetic reasoning. Finally, we consider in more detail two interesting application areas. We discuss the desirability of combining the rigour of theorem provers with the power and convenience of computer algebra systems, and explain a method we have used in practice to achieve this. We then move on to the verification of floating point hardware. After a careful discussion of possible correctness specifications, we report on two case studies, one involving a transcendental function.
Theorem Proving with the Real Numbers
Author: John Robert Harrison
Publisher:
ISBN:
Category : Automatic theorem proving
Languages : en
Pages : 164
Book Description
Abstract: "This thesis discusses the use of the real numbers in theorem proving. Typically, theorem provers only support a few 'discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of floating point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We describe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and the formalization of a significant portion of real analysis. We also describe an advanced derived decision procedure for the 'Tarski subset' of real algebra as well as some more modest but practically useful tools for automating explicit calculations and routine linear arithmetic reasoning. Finally, we consider in more detail two interesting application areas. We discuss the desirability of combining the rigour of theorem provers with the power and convenience of computer algebra systems, and explain a method we have used in practice to achieve this. We then move on to the verification of floating point hardware. After a careful discussion of possible correctness specifications, we report on two case studies, one involving a transcendental function. We aim to show that a theory of real numbers is useful in practice and interesting in theory, and that the 'LCF style' of theorem proving is well suited to the kind of work we describe. We hope also to convince the reader that the kind of mathematics needed for applications is well within the abilities of current theorem proving technology."
Publisher:
ISBN:
Category : Automatic theorem proving
Languages : en
Pages : 164
Book Description
Abstract: "This thesis discusses the use of the real numbers in theorem proving. Typically, theorem provers only support a few 'discrete' datatypes such as the natural numbers. However the availability of the real numbers opens up many interesting and important application areas, such as the verification of floating point hardware and hybrid systems. It also allows the formalization of many more branches of classical mathematics, which is particularly relevant for attempts to inject more rigour into computer algebra systems. Our work is conducted in a version of the HOL theorem prover. We describe the rigorous definitional construction of the real numbers, using a new version of Cantor's method, and the formalization of a significant portion of real analysis. We also describe an advanced derived decision procedure for the 'Tarski subset' of real algebra as well as some more modest but practically useful tools for automating explicit calculations and routine linear arithmetic reasoning. Finally, we consider in more detail two interesting application areas. We discuss the desirability of combining the rigour of theorem provers with the power and convenience of computer algebra systems, and explain a method we have used in practice to achieve this. We then move on to the verification of floating point hardware. After a careful discussion of possible correctness specifications, we report on two case studies, one involving a transcendental function. We aim to show that a theory of real numbers is useful in practice and interesting in theory, and that the 'LCF style' of theorem proving is well suited to the kind of work we describe. We hope also to convince the reader that the kind of mathematics needed for applications is well within the abilities of current theorem proving technology."
The Real Numbers and Real Analysis
Author: Ethan D. Bloch
Publisher: Springer Science & Business Media
ISBN: 0387721762
Category : Mathematics
Languages : en
Pages : 577
Book Description
This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.
Publisher: Springer Science & Business Media
ISBN: 0387721762
Category : Mathematics
Languages : en
Pages : 577
Book Description
This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.
Real Analysis
Author: Halsey Royden
Publisher:
ISBN: 9780134689494
Category : Business & Economics
Languages : en
Pages : 0
Book Description
This text is designed for graduate-level courses in real analysis. Real Analysis, 4th Edition, covers the basic material that every graduate student should know in the classical theory of functions of a real variable, measure and integration theory, and some of the more important and elementary topics in general topology and normed linear space theory. This text assumes a general background in undergraduate mathematics and familiarity with the material covered in an undergraduate course on the fundamental concepts of analysis.
Publisher:
ISBN: 9780134689494
Category : Business & Economics
Languages : en
Pages : 0
Book Description
This text is designed for graduate-level courses in real analysis. Real Analysis, 4th Edition, covers the basic material that every graduate student should know in the classical theory of functions of a real variable, measure and integration theory, and some of the more important and elementary topics in general topology and normed linear space theory. This text assumes a general background in undergraduate mathematics and familiarity with the material covered in an undergraduate course on the fundamental concepts of analysis.
How to Prove It
Author: Daniel J. Velleman
Publisher: Cambridge University Press
ISBN: 0521861241
Category : Mathematics
Languages : en
Pages : 401
Book Description
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Publisher: Cambridge University Press
ISBN: 0521861241
Category : Mathematics
Languages : en
Pages : 401
Book Description
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
The Fundamental Theorem of Algebra
Author: Benjamin Fine
Publisher: Springer Science & Business Media
ISBN: 1461219280
Category : Mathematics
Languages : en
Pages : 220
Book Description
The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.
Publisher: Springer Science & Business Media
ISBN: 1461219280
Category : Mathematics
Languages : en
Pages : 220
Book Description
The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.
Foundations of Analysis
Author: Joseph L. Taylor
Publisher: American Mathematical Soc.
ISBN: 0821889842
Category : Mathematics
Languages : en
Pages : 411
Book Description
Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.
Publisher: American Mathematical Soc.
ISBN: 0821889842
Category : Mathematics
Languages : en
Pages : 411
Book Description
Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. --Book cover.
Proofs from THE BOOK
Author: Martin Aigner
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194
Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194
Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
The Prime Number Theorem
Author: G. J. O. Jameson
Publisher: Cambridge University Press
ISBN: 9780521891103
Category : Mathematics
Languages : en
Pages : 266
Book Description
At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The prime number theorem tells us what this formula is and it is indisputably one of the great classical theorems of mathematics. This textbook gives an introduction to the prime number theorem suitable for advanced undergraduates and beginning graduate students. The author's aim is to show the reader how the tools of analysis can be used in number theory to attack a 'real' problem, and it is based on his own experiences of teaching this material.
Publisher: Cambridge University Press
ISBN: 9780521891103
Category : Mathematics
Languages : en
Pages : 266
Book Description
At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The prime number theorem tells us what this formula is and it is indisputably one of the great classical theorems of mathematics. This textbook gives an introduction to the prime number theorem suitable for advanced undergraduates and beginning graduate students. The author's aim is to show the reader how the tools of analysis can be used in number theory to attack a 'real' problem, and it is based on his own experiences of teaching this material.
How to Prove It
Author: Daniel J. Velleman
Publisher: Cambridge University Press
ISBN: 1108335888
Category : Mathematics
Languages : en
Pages : 448
Book Description
Proofs play a central role in advanced mathematics and theoretical computer science, yet many students struggle the first time they take a course in which proofs play a significant role. This bestselling text's third edition helps students transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. Featuring over 150 new exercises and a new chapter on number theory, this new edition introduces students to the world of advanced mathematics through the mastery of proofs. The book begins with the basic concepts of logic and set theory to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for an analysis of techniques that can be used to build up complex proofs step by step, using detailed 'scratch work' sections to expose the machinery of proofs about numbers, sets, relations, and functions. Assuming no background beyond standard high school mathematics, this book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and, of course, mathematicians.
Publisher: Cambridge University Press
ISBN: 1108335888
Category : Mathematics
Languages : en
Pages : 448
Book Description
Proofs play a central role in advanced mathematics and theoretical computer science, yet many students struggle the first time they take a course in which proofs play a significant role. This bestselling text's third edition helps students transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. Featuring over 150 new exercises and a new chapter on number theory, this new edition introduces students to the world of advanced mathematics through the mastery of proofs. The book begins with the basic concepts of logic and set theory to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for an analysis of techniques that can be used to build up complex proofs step by step, using detailed 'scratch work' sections to expose the machinery of proofs about numbers, sets, relations, and functions. Assuming no background beyond standard high school mathematics, this book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and, of course, mathematicians.