Author: Christon J. Hurst
Publisher: Springer
ISBN: 9783319280691
Category : Science
Languages : en
Pages : 0
Book Description
This volume summarizes recent advances in environmental microbiology by providing fascinating insights into the diversity of microbial life that exists on our planet. The first two chapters present theoretical perspectives that help to consolidate our understanding of evolution as an adaptive process by which the niche and habitat of each species develop in a manner that interconnects individual components of an ecosystem. This results in communities that function by simultaneously coordinating their metabolic and physiologic actions. The third contribution addresses the fossil record of microorganisms, and the subsequent chapters then introduce the microbial life that currently exists in various terrestrial and aquatic ecosystems. Coverage of the geosphere addresses endolithic organisms, life in caves and the deep continental biosphere, including how subsurface microbial life may impact spent nuclear fuel repositories. The discussion of the hydrosphere includes hypersaline environments and arctic food chains. By better understanding examples from the micro biosphere, we can elucidate the many ways in which the niches of different species, both large and small, interconnect within the overlapping habitats of this world, which is governed by its microorganisms.
Their World: A Diversity of Microbial Environments
Their World: A Diversity of Microbial Environments
Author: Christon J. Hurst
Publisher: Springer
ISBN: 3319280716
Category : Science
Languages : en
Pages : 391
Book Description
This volume summarizes recent advances in environmental microbiology by providing fascinating insights into the diversity of microbial life that exists on our planet. The first two chapters present theoretical perspectives that help to consolidate our understanding of evolution as an adaptive process by which the niche and habitat of each species develop in a manner that interconnects individual components of an ecosystem. This results in communities that function by simultaneously coordinating their metabolic and physiologic actions. The third contribution addresses the fossil record of microorganisms, and the subsequent chapters then introduce the microbial life that currently exists in various terrestrial and aquatic ecosystems. Coverage of the geosphere addresses endolithic organisms, life in caves and the deep continental biosphere, including how subsurface microbial life may impact spent nuclear fuel repositories. The discussion of the hydrosphere includes hypersaline environments and arctic food chains. By better understanding examples from the micro biosphere, we can elucidate the many ways in which the niches of different species, both large and small, interconnect within the overlapping habitats of this world, which is governed by its microorganisms.
Publisher: Springer
ISBN: 3319280716
Category : Science
Languages : en
Pages : 391
Book Description
This volume summarizes recent advances in environmental microbiology by providing fascinating insights into the diversity of microbial life that exists on our planet. The first two chapters present theoretical perspectives that help to consolidate our understanding of evolution as an adaptive process by which the niche and habitat of each species develop in a manner that interconnects individual components of an ecosystem. This results in communities that function by simultaneously coordinating their metabolic and physiologic actions. The third contribution addresses the fossil record of microorganisms, and the subsequent chapters then introduce the microbial life that currently exists in various terrestrial and aquatic ecosystems. Coverage of the geosphere addresses endolithic organisms, life in caves and the deep continental biosphere, including how subsurface microbial life may impact spent nuclear fuel repositories. The discussion of the hydrosphere includes hypersaline environments and arctic food chains. By better understanding examples from the micro biosphere, we can elucidate the many ways in which the niches of different species, both large and small, interconnect within the overlapping habitats of this world, which is governed by its microorganisms.
Recent Advancements in Microbial Diversity
Author: Surajit de Mandal
Publisher: Academic Press
ISBN: 0128212667
Category : Science
Languages : en
Pages : 624
Book Description
Microorganisms are a major part of the Earth's biological diversity. Although a lot of research has been done on microbial diversity, most of it is fragmented. This book creates the need for a unified text to be published, full of information about microbial diversity from highly reputed and impactful sources. Recent Advancements in Microbial Diversity brings a comprehensive understanding of the recent advances in microbial diversity research focused on different bodily systems, such as the gut. Recent Advancements in Microbial Diversity also discusses how the application of advanced sequencing technologies is used to reveal previously unseen microbial diversity and show off its function. - Gives insight into microbial diversity in different bodily systems - Explains novel approaches to studying microbial diversity - Highlights the use of omics to analyze the microbial community and its functional attributes - Discusses the techniques used to examine microbial diversity, including their applications and respective strengths and weaknesses
Publisher: Academic Press
ISBN: 0128212667
Category : Science
Languages : en
Pages : 624
Book Description
Microorganisms are a major part of the Earth's biological diversity. Although a lot of research has been done on microbial diversity, most of it is fragmented. This book creates the need for a unified text to be published, full of information about microbial diversity from highly reputed and impactful sources. Recent Advancements in Microbial Diversity brings a comprehensive understanding of the recent advances in microbial diversity research focused on different bodily systems, such as the gut. Recent Advancements in Microbial Diversity also discusses how the application of advanced sequencing technologies is used to reveal previously unseen microbial diversity and show off its function. - Gives insight into microbial diversity in different bodily systems - Explains novel approaches to studying microbial diversity - Highlights the use of omics to analyze the microbial community and its functional attributes - Discusses the techniques used to examine microbial diversity, including their applications and respective strengths and weaknesses
Diversity of the Microbial World
Author: Angélica Cibrián-Jaramillo
Publisher: Frontiers Media SA
ISBN: 2889636658
Category :
Languages : en
Pages : 86
Book Description
Microbes, or microorganisms, are tiny living beings that cannot be seen by the naked eye. These little guys are one of the oldest living things on Earth, and are extremely diverse in how they live and what they can do. They, for example, can live in many places, from the freezing iciness of glaciers, to the insides of other organisms, like termites or humans. Since they are virtually everywhere, microorganisms are essential for the biological processes that allow plants and animals to breath, eat and thrive. But how were they able to endure, adapt and flourish constantly over millions of years? The secrets of their success are still within them, coded into their genomes, waiting for us to understand them. Now, genomes, bacterial or otherwise, are the repositories of life. These repositories store almost every bit of information that allows living beings to live in discrete units called genes. Genes are strung together like the sentences in a book, interacting with each other to create meaning, saving the story of that particular book—or that particular living organism’s genome—so it can be copied, modified, corrected or enhanced, and then passed on to new generations. After many, many years of studying these “books,” we have learned to read and understand them, thanks to the technological innovations of the last decade. Nowadays, it is possible to get the full genomic sequence of practically any organism, and compare it with thousands of genomes from other organisms, letting us peek at the secrets that make each organism who it is. With the current technical abilities, the challenge now is not to obtain the information but to interpret all those chunks of the story. Finding ways to untangle the riddles of genomic information is the work of Genomics, the science that allows us to obtain, analyze and prioritize information among the many stories that we sequence everyday. To do this, Genomics draws from many sciences, like mathematics and computing sciences, making it a truly interdisciplinary endeavor. Right now , genomics are one of the most important areas of biology, and many, if not most, of current biological studies use at least a little bit of genomics. For example, genomics can be used to identify a microbe and give it a name, to learn about what types of things it can do or places it can live, and to figure out the mechanisms that enable it to survive under particular conditions. Here, we will dwell on some of the basic questions about microbial adaptation, biodiversity, and their relationships with other living beings using a genomic approach. We will also focus on the environment, trying to understand how such tiny little creatures are capable of solving their daily problems, and how they can alter the places in which they live. Learning about these mechanisms will not only provide us with knowledge about life in general but will also help us to understand these organisms as a fundamental component of our ecosystem, including their harmful and beneficial effects in all aspects of our daily life, which can be translated into useful applications in almost any imaginable way.
Publisher: Frontiers Media SA
ISBN: 2889636658
Category :
Languages : en
Pages : 86
Book Description
Microbes, or microorganisms, are tiny living beings that cannot be seen by the naked eye. These little guys are one of the oldest living things on Earth, and are extremely diverse in how they live and what they can do. They, for example, can live in many places, from the freezing iciness of glaciers, to the insides of other organisms, like termites or humans. Since they are virtually everywhere, microorganisms are essential for the biological processes that allow plants and animals to breath, eat and thrive. But how were they able to endure, adapt and flourish constantly over millions of years? The secrets of their success are still within them, coded into their genomes, waiting for us to understand them. Now, genomes, bacterial or otherwise, are the repositories of life. These repositories store almost every bit of information that allows living beings to live in discrete units called genes. Genes are strung together like the sentences in a book, interacting with each other to create meaning, saving the story of that particular book—or that particular living organism’s genome—so it can be copied, modified, corrected or enhanced, and then passed on to new generations. After many, many years of studying these “books,” we have learned to read and understand them, thanks to the technological innovations of the last decade. Nowadays, it is possible to get the full genomic sequence of practically any organism, and compare it with thousands of genomes from other organisms, letting us peek at the secrets that make each organism who it is. With the current technical abilities, the challenge now is not to obtain the information but to interpret all those chunks of the story. Finding ways to untangle the riddles of genomic information is the work of Genomics, the science that allows us to obtain, analyze and prioritize information among the many stories that we sequence everyday. To do this, Genomics draws from many sciences, like mathematics and computing sciences, making it a truly interdisciplinary endeavor. Right now , genomics are one of the most important areas of biology, and many, if not most, of current biological studies use at least a little bit of genomics. For example, genomics can be used to identify a microbe and give it a name, to learn about what types of things it can do or places it can live, and to figure out the mechanisms that enable it to survive under particular conditions. Here, we will dwell on some of the basic questions about microbial adaptation, biodiversity, and their relationships with other living beings using a genomic approach. We will also focus on the environment, trying to understand how such tiny little creatures are capable of solving their daily problems, and how they can alter the places in which they live. Learning about these mechanisms will not only provide us with knowledge about life in general but will also help us to understand these organisms as a fundamental component of our ecosystem, including their harmful and beneficial effects in all aspects of our daily life, which can be translated into useful applications in almost any imaginable way.
Microbiology
Author: Abigail A. Salyers
Publisher:
ISBN:
Category : Medical
Languages : en
Pages : 656
Book Description
Microbiology: Diversity, Disease, and the Environment is an exciting new introductory level Microbiology text will serve the needs of lecturers and students in a wide variety of life science, health science, and applied science programs. The recurrent theme in this text is the delicate balance between microbes and humans, and how recent changes in that balance may bring about changes that have adverse effects, such as emerging infectious diseases and micro-organisms resistant to antibiotics. The text does not, however, focus exclusively on microbes as causal agents, but also portrays them as life-givers responsible for the earth's ability to support higher forms of life. This new text will enable instructors to cover all the essential topics of classic and contemporary microbiology in a standard one-term course and will enthuse your students as they learn about the beauty and diversity, as well as the dangers, of the microbial world in which they live. Each chapter contains study outlines and thought- provoking questions to help students master both the daunting vocabulary and key concepts of the field. A list of useful websites is listed at the end of each chapter. Focus boxes in all chapters recount fascinating historical highlights and point out provocative public policy issues. A complete glossary is provided in the back of the book. All of the art figures in the book are available to instructors in PowerPoint and a complete test bank with over 300 multiple-choice test questions is also provided on the Instructor's Digital Resource that will be available free in CD-ROM format to all adopters. A website for the book will contain coverage of breakthroughs and updates to keep the book current. This website links to the important microbiology websites. For more information please check out the following website www.fitzscipress.com.
Publisher:
ISBN:
Category : Medical
Languages : en
Pages : 656
Book Description
Microbiology: Diversity, Disease, and the Environment is an exciting new introductory level Microbiology text will serve the needs of lecturers and students in a wide variety of life science, health science, and applied science programs. The recurrent theme in this text is the delicate balance between microbes and humans, and how recent changes in that balance may bring about changes that have adverse effects, such as emerging infectious diseases and micro-organisms resistant to antibiotics. The text does not, however, focus exclusively on microbes as causal agents, but also portrays them as life-givers responsible for the earth's ability to support higher forms of life. This new text will enable instructors to cover all the essential topics of classic and contemporary microbiology in a standard one-term course and will enthuse your students as they learn about the beauty and diversity, as well as the dangers, of the microbial world in which they live. Each chapter contains study outlines and thought- provoking questions to help students master both the daunting vocabulary and key concepts of the field. A list of useful websites is listed at the end of each chapter. Focus boxes in all chapters recount fascinating historical highlights and point out provocative public policy issues. A complete glossary is provided in the back of the book. All of the art figures in the book are available to instructors in PowerPoint and a complete test bank with over 300 multiple-choice test questions is also provided on the Instructor's Digital Resource that will be available free in CD-ROM format to all adopters. A website for the book will contain coverage of breakthroughs and updates to keep the book current. This website links to the important microbiology websites. For more information please check out the following website www.fitzscipress.com.
Microbial Diversity and Ecology in Hotspots
Author: Aparna Gunjal
Publisher: Academic Press
ISBN: 0323901492
Category : Science
Languages : en
Pages : 394
Book Description
Microbial Diversity in Hotspots provides an introduction to microbial diversity and microbes in different hotspots and threatened areas. The book gives insights on extremophiles, phyllosphere and rhizosphere, covers fungal diversity, conservation and microbial association, focuses on biodiversity acts and policies, and includes cases studies. Microbes explored are from the coldest to the hottest areas of the world. Although hotspots are zones with extremely high microbiology activities, the knowledge of microbial diversity from these areas is very limited, hence this is a welcome addition to existing resources. - Provides an introduction to microbial biotechnology - Addresses novel approaches to the study of microbial diversity in hotspots - Provides the basics, along with advanced information on microbial diversity - Discusses the techniques used to examine microbial diversity with their applications and respective pros and cons for sustainability - Explores the importance of microbial genomes studies in commercial applications
Publisher: Academic Press
ISBN: 0323901492
Category : Science
Languages : en
Pages : 394
Book Description
Microbial Diversity in Hotspots provides an introduction to microbial diversity and microbes in different hotspots and threatened areas. The book gives insights on extremophiles, phyllosphere and rhizosphere, covers fungal diversity, conservation and microbial association, focuses on biodiversity acts and policies, and includes cases studies. Microbes explored are from the coldest to the hottest areas of the world. Although hotspots are zones with extremely high microbiology activities, the knowledge of microbial diversity from these areas is very limited, hence this is a welcome addition to existing resources. - Provides an introduction to microbial biotechnology - Addresses novel approaches to the study of microbial diversity in hotspots - Provides the basics, along with advanced information on microbial diversity - Discusses the techniques used to examine microbial diversity with their applications and respective pros and cons for sustainability - Explores the importance of microbial genomes studies in commercial applications
Microbiology: A Very Short Introduction
Author: Nicholas P. Money
Publisher: OUP Oxford
ISBN: 0191503924
Category : Science
Languages : en
Pages : 137
Book Description
In recent decades we have come to realize that the microbial world is hugely diverse, and can be found in the most extreme environments. Fungi, single-celled protists, bacteria, archaea, and the vast array of viruses and sub-viral particles far outnumber plants and animals. Microbes, we now know, play a critical role in ecosystems, in the chemistry of atmosphere and oceans, and within our bodies. The field of microbiology, armed with new techniques from molecular biology, is now one of the most vibrant in the life sciences. In this Very Short Introduction Nicholas P. Money explores not only the traditional methods of microscopy and laboratory culture but also the modern techniques of genetic detection and DNA sequencing, genomic analysis, and genetic manipulation. In turn he demonstrates how advances in microbiology have had a tremendous impact on the areas of medicine, agriculture, and biotechnology. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: OUP Oxford
ISBN: 0191503924
Category : Science
Languages : en
Pages : 137
Book Description
In recent decades we have come to realize that the microbial world is hugely diverse, and can be found in the most extreme environments. Fungi, single-celled protists, bacteria, archaea, and the vast array of viruses and sub-viral particles far outnumber plants and animals. Microbes, we now know, play a critical role in ecosystems, in the chemistry of atmosphere and oceans, and within our bodies. The field of microbiology, armed with new techniques from molecular biology, is now one of the most vibrant in the life sciences. In this Very Short Introduction Nicholas P. Money explores not only the traditional methods of microscopy and laboratory culture but also the modern techniques of genetic detection and DNA sequencing, genomic analysis, and genetic manipulation. In turn he demonstrates how advances in microbiology have had a tremendous impact on the areas of medicine, agriculture, and biotechnology. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Microbial Diversity
Author: Oladele Ogunseitan
Publisher: John Wiley & Sons
ISBN: 1405144483
Category : Science
Languages : en
Pages : 312
Book Description
This book offers the first comprehensive, in-depth treatment of microbial diversity for undergraduate and graduate students. Using a global approach, Microbial Diversity illustrates the impact of microorganisms on ecological and Earth system phenomena. Accompanied by a devoted website with resources for both instructors and students: www.blackwellpublishing.com/ogunseitan Uses key ecological and global phenomena to show the continuity of microbial contribution. Illustrates the importance of microbial diversity for the understanding of global physiochemical and biological processes. Presents analyses of microscopic, culture, molecular, and phylogenetic systematic methods. Shows the relevance of microbial diversity to global environmental problems, such as climate change and ozone depletion. Features numerous illustrations, including over 60 4-color photographs of microbes.
Publisher: John Wiley & Sons
ISBN: 1405144483
Category : Science
Languages : en
Pages : 312
Book Description
This book offers the first comprehensive, in-depth treatment of microbial diversity for undergraduate and graduate students. Using a global approach, Microbial Diversity illustrates the impact of microorganisms on ecological and Earth system phenomena. Accompanied by a devoted website with resources for both instructors and students: www.blackwellpublishing.com/ogunseitan Uses key ecological and global phenomena to show the continuity of microbial contribution. Illustrates the importance of microbial diversity for the understanding of global physiochemical and biological processes. Presents analyses of microscopic, culture, molecular, and phylogenetic systematic methods. Shows the relevance of microbial diversity to global environmental problems, such as climate change and ozone depletion. Features numerous illustrations, including over 60 4-color photographs of microbes.
Science Needs for Microbial Forensics
Author: National Research Council (U.S.). Committee on Science Needs for Microbial Forensics: Developing an Initial International Roadmap
Publisher:
ISBN: 9780309302456
Category : Law
Languages : en
Pages : 0
Book Description
For these reasons, building awareness of and capacity in microbial forensics can assist in our understanding of what may have occurred during a biothreat event, and international collaborations that engage the broader scientific and policy-making communities are likely to strengthen our microbial forensics capabilities. One goal would be to create a shared technical understanding of the possibilities--and limitations--of the scientific bases for microbial forensics analysis. Science Needs for Microbial Forensics: Developing Initial International Research Priorities, based partly on a workshop held in Zabgreb, Croatia in 2013, identifies scientific needs that must be addressed to improve the capabilities of microbial forensics to investigate infectious disease outbreaks and provide evidence of sufficient quality to support legal proceedings and the development of government policies.
Publisher:
ISBN: 9780309302456
Category : Law
Languages : en
Pages : 0
Book Description
For these reasons, building awareness of and capacity in microbial forensics can assist in our understanding of what may have occurred during a biothreat event, and international collaborations that engage the broader scientific and policy-making communities are likely to strengthen our microbial forensics capabilities. One goal would be to create a shared technical understanding of the possibilities--and limitations--of the scientific bases for microbial forensics analysis. Science Needs for Microbial Forensics: Developing Initial International Research Priorities, based partly on a workshop held in Zabgreb, Croatia in 2013, identifies scientific needs that must be addressed to improve the capabilities of microbial forensics to investigate infectious disease outbreaks and provide evidence of sufficient quality to support legal proceedings and the development of government policies.
Uncultivated Microorganisms
Author: Slava S. Epstein
Publisher: Springer Science & Business Media
ISBN: 3540854657
Category : Medical
Languages : en
Pages : 215
Book Description
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959).
Publisher: Springer Science & Business Media
ISBN: 3540854657
Category : Medical
Languages : en
Pages : 215
Book Description
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959).