Author: Alexander Sinitsyn
Publisher: Elsevier
ISBN: 0123877806
Category : Mathematics
Languages : en
Pages : 321
Book Description
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. - Reviews the whole field from the beginning to today - Includes practical applications - Provides classical and modern (semi-analytical) solutions
Kinetic Boltzmann, Vlasov and Related Equations
Author: Alexander Sinitsyn
Publisher: Elsevier
ISBN: 0123877806
Category : Mathematics
Languages : en
Pages : 321
Book Description
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. - Reviews the whole field from the beginning to today - Includes practical applications - Provides classical and modern (semi-analytical) solutions
Publisher: Elsevier
ISBN: 0123877806
Category : Mathematics
Languages : en
Pages : 321
Book Description
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. - Reviews the whole field from the beginning to today - Includes practical applications - Provides classical and modern (semi-analytical) solutions
Particle Accelerator Physics
Author: Helmut Wiedemann
Publisher: Springer Science & Business Media
ISBN: 3662029030
Category : Science
Languages : en
Pages : 457
Book Description
Particle Accelerator Physics covers the dynamics of relativistic particle beams, basics of particle guidance and focusing, lattice design, characteristics of beam transport systems and circular accelerators. Particle-beam optics is treated in the linear approximation including sextupoles to correct for chromatic aberrations. Perturbations to linear beam dynamics are analyzed in detail and correction measures are discussed, while basic lattice design features and building blocks leading to the design of more complicated beam transport systems and circular accelerators are studied. Characteristics of synchrotron radiation and quantum effects due to the statistical emission of photons on particle trajectories are derived and applied to determine particle-beam parameters. The discussions specifically concentrate on relativistic particle beams and the physics of beam optics in beam transport systems and circular accelerators such as synchrotrons and storage rings. This book forms a broad basis for further, more detailed studies of nonlinear beam dynamics and associated accelerator physics problems, discussed in the subsequent volume.
Publisher: Springer Science & Business Media
ISBN: 3662029030
Category : Science
Languages : en
Pages : 457
Book Description
Particle Accelerator Physics covers the dynamics of relativistic particle beams, basics of particle guidance and focusing, lattice design, characteristics of beam transport systems and circular accelerators. Particle-beam optics is treated in the linear approximation including sextupoles to correct for chromatic aberrations. Perturbations to linear beam dynamics are analyzed in detail and correction measures are discussed, while basic lattice design features and building blocks leading to the design of more complicated beam transport systems and circular accelerators are studied. Characteristics of synchrotron radiation and quantum effects due to the statistical emission of photons on particle trajectories are derived and applied to determine particle-beam parameters. The discussions specifically concentrate on relativistic particle beams and the physics of beam optics in beam transport systems and circular accelerators such as synchrotrons and storage rings. This book forms a broad basis for further, more detailed studies of nonlinear beam dynamics and associated accelerator physics problems, discussed in the subsequent volume.
High-Power Laser-Plasma Interaction
Author: C. S. Liu
Publisher: Cambridge University Press
ISBN: 1108618227
Category : Science
Languages : en
Pages : 308
Book Description
The field of high-power laser-plasma interaction has grown in the last few decades, with applications ranging from laser-driven fusion and laser acceleration of charged particles to laser ablation of materials. This comprehensive text covers fundamental concepts including electromagnetics and electrostatic waves, parameter instabilities, laser driven fusion,charged particle acceleration and gamma rays. Two important techniques of laser proton interactions including target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA) are discussed in detail, along with their applications in the field of medicine. An analytical framework is developed for laser beat-wave and wakefield excitation of plasma waves and subsequent acceleration of electrons. The book covers parametric oscillator model and studies the coupling of laser light with collective modes.
Publisher: Cambridge University Press
ISBN: 1108618227
Category : Science
Languages : en
Pages : 308
Book Description
The field of high-power laser-plasma interaction has grown in the last few decades, with applications ranging from laser-driven fusion and laser acceleration of charged particles to laser ablation of materials. This comprehensive text covers fundamental concepts including electromagnetics and electrostatic waves, parameter instabilities, laser driven fusion,charged particle acceleration and gamma rays. Two important techniques of laser proton interactions including target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA) are discussed in detail, along with their applications in the field of medicine. An analytical framework is developed for laser beat-wave and wakefield excitation of plasma waves and subsequent acceleration of electrons. The book covers parametric oscillator model and studies the coupling of laser light with collective modes.
Basic Space Plasma Physics (Revised Edition)
Author: Wolfgang Baumjohann
Publisher: World Scientific Publishing Company
ISBN: 1911298682
Category : Science
Languages : en
Pages : 496
Book Description
This textbook begins with a description of the Earth's plasma environment, followed by the derivation of single particle motions in electromagnetic fields, with applications to the Earth's magnetosphere. Also discussed are the origin and effects of collisions and conductivities, formation of the ionosphere, magnetospheric convection and dynamics, and solar wind-magnetosphere coupling.The second half of the book presents a more theoretical foundation of plasma physics, starting with kinetic theory. Introducing moments of distribution function permits the derivation of the fluid equations, followed by an analysis of fluid boundaries, with the Earth's magnetopause and bow shock as examples, and finally, fluid and kinetic theory are applied to derive the relevant wave modes in a plasma.This revised edition seamlessly integrates new sections on magnetopause reconstruction, as well as instability theory and thermal fluctuations based on new developments in space physics. Applications such as the important problems of collisionless reconnection and collisionless shocks are covered, and some problems have also been included at the end of each chapter.
Publisher: World Scientific Publishing Company
ISBN: 1911298682
Category : Science
Languages : en
Pages : 496
Book Description
This textbook begins with a description of the Earth's plasma environment, followed by the derivation of single particle motions in electromagnetic fields, with applications to the Earth's magnetosphere. Also discussed are the origin and effects of collisions and conductivities, formation of the ionosphere, magnetospheric convection and dynamics, and solar wind-magnetosphere coupling.The second half of the book presents a more theoretical foundation of plasma physics, starting with kinetic theory. Introducing moments of distribution function permits the derivation of the fluid equations, followed by an analysis of fluid boundaries, with the Earth's magnetopause and bow shock as examples, and finally, fluid and kinetic theory are applied to derive the relevant wave modes in a plasma.This revised edition seamlessly integrates new sections on magnetopause reconstruction, as well as instability theory and thermal fluctuations based on new developments in space physics. Applications such as the important problems of collisionless reconnection and collisionless shocks are covered, and some problems have also been included at the end of each chapter.
The Vlasov Equation 1
Author: Pierre Bertrand
Publisher: John Wiley & Sons
ISBN: 1119662672
Category : Science
Languages : en
Pages : 322
Book Description
The Vlasov equation is the master equation which provides a statistical description for the collective behavior of large numbers of charged particles in mutual, long-range interaction. In other words, a low collision (or “Vlasov”) plasma. Plasma physics is itself a relatively young discipline, whose “birth” can be ascribed to the 1920s. The origin of the Vlasov model, however, is even more recent, dating back to the late 1940s. This “young age” is due to the rare occurrence of Vlasov plasma on Earth, despite the fact it characterizes most of the visible matter in the universe. This book – addressed to students, young researchers and to whoever wants a good understanding of Vlasov plasmas – discusses this model with a pedagogical presentation, focusing on the general properties and historical development of the applications of the Vlasov equation. The milestone developments discussed in the first two chapters serve as an introduction to more recent works (characterization of wave propagation and nonlinear properties of the electrostatic limit).
Publisher: John Wiley & Sons
ISBN: 1119662672
Category : Science
Languages : en
Pages : 322
Book Description
The Vlasov equation is the master equation which provides a statistical description for the collective behavior of large numbers of charged particles in mutual, long-range interaction. In other words, a low collision (or “Vlasov”) plasma. Plasma physics is itself a relatively young discipline, whose “birth” can be ascribed to the 1920s. The origin of the Vlasov model, however, is even more recent, dating back to the late 1940s. This “young age” is due to the rare occurrence of Vlasov plasma on Earth, despite the fact it characterizes most of the visible matter in the universe. This book – addressed to students, young researchers and to whoever wants a good understanding of Vlasov plasmas – discusses this model with a pedagogical presentation, focusing on the general properties and historical development of the applications of the Vlasov equation. The milestone developments discussed in the first two chapters serve as an introduction to more recent works (characterization of wave propagation and nonlinear properties of the electrostatic limit).
Kinetic Equations and Asymptotic Theory
Author: François Bouchut
Publisher: Elsevier Masson
ISBN:
Category : Science
Languages : en
Pages : 180
Book Description
Publisher: Elsevier Masson
ISBN:
Category : Science
Languages : en
Pages : 180
Book Description
The Cauchy Problem in Kinetic Theory
Author: Robert T. Glassey
Publisher: SIAM
ISBN: 0898713676
Category : Science
Languages : en
Pages : 246
Book Description
Studies the basic equations of kinetic theory in all of space, and contains up-to-date, state-of-the-art treatments of initial-value problems for the major kinetic equations. This is the only existing book to treat Boltzmann-type problems and Vlasov-type problems together. Although describing very different phenomena, these equations share the same streaming term.
Publisher: SIAM
ISBN: 0898713676
Category : Science
Languages : en
Pages : 246
Book Description
Studies the basic equations of kinetic theory in all of space, and contains up-to-date, state-of-the-art treatments of initial-value problems for the major kinetic equations. This is the only existing book to treat Boltzmann-type problems and Vlasov-type problems together. Although describing very different phenomena, these equations share the same streaming term.
The Method of Fractional Steps
Author: Nikolaj N. Yanenko
Publisher: Springer Science & Business Media
ISBN: 3642651089
Category : Mathematics
Languages : en
Pages : 169
Book Description
The method of. fractional steps, known familiarly as the method oi splitting, is a remarkable technique, developed by N. N. Yanenko and his collaborators, for solving problems in theoretical mechanics numerically. It is applicable especially to potential problems, problems of elasticity and problems of fluid dynamics. Most of the applications at the present time have been to incompressible flow with free bound aries and to viscous flow at low speeds. The method offers a powerful means of solving the Navier-Stokes equations and the results produced so far cover a range of Reynolds numbers far greater than that attained in earlier methods. Further development of the method should lead to complete numerical solutions of many of the boundary layer and wake problems which at present defy satisfactory treatment. As noted by the author very few applications of the method have yet been made to problems in solid mechanics and prospects for answers both in this field and other areas such as heat transfer are encouraging. As the method is perfected it is likely to supplant traditional relaxation methods and finite element methods, especially with the increase in capability of large scale computers. The literal translation was carried out by T. Cheron with financial support of the Northrop Corporation. The editing of the translation was undertaken in collaboration with N. N. Yanenko and it is a plea sure to acknowledge his patient help and advice in this project. The edited manuscript was typed, for the most part, by Mrs.
Publisher: Springer Science & Business Media
ISBN: 3642651089
Category : Mathematics
Languages : en
Pages : 169
Book Description
The method of. fractional steps, known familiarly as the method oi splitting, is a remarkable technique, developed by N. N. Yanenko and his collaborators, for solving problems in theoretical mechanics numerically. It is applicable especially to potential problems, problems of elasticity and problems of fluid dynamics. Most of the applications at the present time have been to incompressible flow with free bound aries and to viscous flow at low speeds. The method offers a powerful means of solving the Navier-Stokes equations and the results produced so far cover a range of Reynolds numbers far greater than that attained in earlier methods. Further development of the method should lead to complete numerical solutions of many of the boundary layer and wake problems which at present defy satisfactory treatment. As noted by the author very few applications of the method have yet been made to problems in solid mechanics and prospects for answers both in this field and other areas such as heat transfer are encouraging. As the method is perfected it is likely to supplant traditional relaxation methods and finite element methods, especially with the increase in capability of large scale computers. The literal translation was carried out by T. Cheron with financial support of the Northrop Corporation. The editing of the translation was undertaken in collaboration with N. N. Yanenko and it is a plea sure to acknowledge his patient help and advice in this project. The edited manuscript was typed, for the most part, by Mrs.
Theory and Design of Charged Particle Beams
Author: Martin Reiser
Publisher: John Wiley & Sons
ISBN: 3527617639
Category : Science
Languages : en
Pages : 634
Book Description
Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density profiles in bunched beams.
Publisher: John Wiley & Sons
ISBN: 3527617639
Category : Science
Languages : en
Pages : 634
Book Description
Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density profiles in bunched beams.
Introduction to Plasma Physics
Author: R.J Goldston
Publisher: CRC Press
ISBN: 9781439822074
Category : Science
Languages : en
Pages : 514
Book Description
Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text's six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.
Publisher: CRC Press
ISBN: 9781439822074
Category : Science
Languages : en
Pages : 514
Book Description
Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text's six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.