Author: Nils K. Oeijord
Publisher: iUniverse
ISBN: 0595801722
Category : Mathematics
Languages : en
Pages : 144
Book Description
Tensor calculus is a generalization of vector calculus, and comes near of being a universal language in physics. Physical laws must be independent of any particular coordinate system used in describing them. This requirement leads to tensor calculus. The only prerequisites for reading this book are a familiarity with calculus (including vector calculus) and linear algebra, and some knowledge of differential equations.
The Very Basics of Tensors
Author: Nils K. Oeijord
Publisher: iUniverse
ISBN: 0595801722
Category : Mathematics
Languages : en
Pages : 144
Book Description
Tensor calculus is a generalization of vector calculus, and comes near of being a universal language in physics. Physical laws must be independent of any particular coordinate system used in describing them. This requirement leads to tensor calculus. The only prerequisites for reading this book are a familiarity with calculus (including vector calculus) and linear algebra, and some knowledge of differential equations.
Publisher: iUniverse
ISBN: 0595801722
Category : Mathematics
Languages : en
Pages : 144
Book Description
Tensor calculus is a generalization of vector calculus, and comes near of being a universal language in physics. Physical laws must be independent of any particular coordinate system used in describing them. This requirement leads to tensor calculus. The only prerequisites for reading this book are a familiarity with calculus (including vector calculus) and linear algebra, and some knowledge of differential equations.
The Very Basics of Tensors
Author: Nils K. Oeijord
Publisher: iUniverse
ISBN: 059535694X
Category : Algebras, Linear
Languages : en
Pages : 149
Book Description
Tensor calculus is a generalization of vector calculus, and comes near of being a universal language in physics. Physical laws must be independent of any particular coordinate system used in describing them. This requirement leads to tensor calculus. The only prerequisites for reading this book are a familiarity with calculus (including vector calculus) and linear algebra, and some knowledge of differential equations.
Publisher: iUniverse
ISBN: 059535694X
Category : Algebras, Linear
Languages : en
Pages : 149
Book Description
Tensor calculus is a generalization of vector calculus, and comes near of being a universal language in physics. Physical laws must be independent of any particular coordinate system used in describing them. This requirement leads to tensor calculus. The only prerequisites for reading this book are a familiarity with calculus (including vector calculus) and linear algebra, and some knowledge of differential equations.
Vectors, Tensors and the Basic Equations of Fluid Mechanics
Author: Rutherford Aris
Publisher: Courier Corporation
ISBN: 048613489X
Category : Mathematics
Languages : en
Pages : 322
Book Description
Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.
Publisher: Courier Corporation
ISBN: 048613489X
Category : Mathematics
Languages : en
Pages : 322
Book Description
Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.
Tensors
Author: Anadi Jiban Das
Publisher: Springer Science & Business Media
ISBN: 0387694692
Category : Science
Languages : en
Pages : 300
Book Description
Here is a modern introduction to the theory of tensor algebra and tensor analysis. It discusses tensor algebra and introduces differential manifold. Coverage also details tensor analysis, differential forms, connection forms, and curvature tensor. In addition, the book investigates Riemannian and pseudo-Riemannian manifolds in great detail. Throughout, examples and problems are furnished from the theory of relativity and continuum mechanics.
Publisher: Springer Science & Business Media
ISBN: 0387694692
Category : Science
Languages : en
Pages : 300
Book Description
Here is a modern introduction to the theory of tensor algebra and tensor analysis. It discusses tensor algebra and introduces differential manifold. Coverage also details tensor analysis, differential forms, connection forms, and curvature tensor. In addition, the book investigates Riemannian and pseudo-Riemannian manifolds in great detail. Throughout, examples and problems are furnished from the theory of relativity and continuum mechanics.
An Introduction to Tensors and Group Theory for Physicists
Author: Nadir Jeevanjee
Publisher: Birkhäuser
ISBN: 3319147943
Category : Science
Languages : en
Pages : 317
Book Description
The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews
Publisher: Birkhäuser
ISBN: 3319147943
Category : Science
Languages : en
Pages : 317
Book Description
The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics. Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations. New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students. Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Examples and exercises are provided in each chapter for good practice in applying the presented material and techniques. Prerequisites for this text include the standard lower-division mathematics and physics courses, though extensive references are provided for the motivated student who has not yet had these. Advanced undergraduate and beginning graduate students in physics and applied mathematics will find this textbook to be a clear, concise, and engaging introduction to tensors and groups. Reviews of the First Edition “[P]hysicist Nadir Jeevanjee has produced a masterly book that will help other physicists understand those subjects [tensors and groups] as mathematicians understand them... From the first pages, Jeevanjee shows amazing skill in finding fresh, compelling words to bring forward the insight that animates the modern mathematical view...[W]ith compelling force and clarity, he provides many carefully worked-out examples and well-chosen specific problems... Jeevanjee’s clear and forceful writing presents familiar cases with a freshness that will draw in and reassure even a fearful student. [This] is a masterpiece of exposition and explanation that would win credit for even a seasoned author.” —Physics Today "Jeevanjee’s [text] is a valuable piece of work on several counts, including its express pedagogical service rendered to fledgling physicists and the fact that it does indeed give pure mathematicians a way to come to terms with what physicists are saying with the same words we use, but with an ostensibly different meaning. The book is very easy to read, very user-friendly, full of examples...and exercises, and will do the job the author wants it to do with style.” —MAA Reviews
Tensor Analysis on Manifolds
Author: Richard L. Bishop
Publisher: Courier Corporation
ISBN: 0486139239
Category : Mathematics
Languages : en
Pages : 290
Book Description
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div
Publisher: Courier Corporation
ISBN: 0486139239
Category : Mathematics
Languages : en
Pages : 290
Book Description
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div
What Are Tensors Exactly?
Author: Hongyu Guo
Publisher: World Scientific
ISBN: 9811241031
Category : Mathematics
Languages : en
Pages : 246
Book Description
Tensors have numerous applications in physics and engineering. There is often a fuzzy haze surrounding the concept of tensor that puzzles many students. The old-fashioned definition is difficult to understand because it is not rigorous; the modern definitions are difficult to understand because they are rigorous but at a cost of being more abstract and less intuitive.The goal of this book is to elucidate the concepts in an intuitive way but without loss of rigor, to help students gain deeper understanding. As a result, they will not need to recite those definitions in a parrot-like manner any more. This volume answers common questions and corrects many misconceptions about tensors. A large number of illuminating illustrations helps the reader to understand the concepts more easily.This unique reference text will benefit researchers, professionals, academics, graduate students and undergraduate students.
Publisher: World Scientific
ISBN: 9811241031
Category : Mathematics
Languages : en
Pages : 246
Book Description
Tensors have numerous applications in physics and engineering. There is often a fuzzy haze surrounding the concept of tensor that puzzles many students. The old-fashioned definition is difficult to understand because it is not rigorous; the modern definitions are difficult to understand because they are rigorous but at a cost of being more abstract and less intuitive.The goal of this book is to elucidate the concepts in an intuitive way but without loss of rigor, to help students gain deeper understanding. As a result, they will not need to recite those definitions in a parrot-like manner any more. This volume answers common questions and corrects many misconceptions about tensors. A large number of illuminating illustrations helps the reader to understand the concepts more easily.This unique reference text will benefit researchers, professionals, academics, graduate students and undergraduate students.
An Introduction to Linear Algebra and Tensors
Author: M. A. Akivis
Publisher: Courier Corporation
ISBN: 0486148785
Category : Mathematics
Languages : en
Pages : 196
Book Description
Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.
Publisher: Courier Corporation
ISBN: 0486148785
Category : Mathematics
Languages : en
Pages : 196
Book Description
Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.
Fundamentals of Tensor Calculus for Engineers with a Primer on Smooth Manifolds
Author: Uwe Mühlich
Publisher: Springer
ISBN: 3319562649
Category : Science
Languages : en
Pages : 134
Book Description
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.
Publisher: Springer
ISBN: 3319562649
Category : Science
Languages : en
Pages : 134
Book Description
This book presents the fundamentals of modern tensor calculus for students in engineering and applied physics, emphasizing those aspects that are crucial for applying tensor calculus safely in Euclidian space and for grasping the very essence of the smooth manifold concept. After introducing the subject, it provides a brief exposition on point set topology to familiarize readers with the subject, especially with those topics required in later chapters. It then describes the finite dimensional real vector space and its dual, focusing on the usefulness of the latter for encoding duality concepts in physics. Moreover, it introduces tensors as objects that encode linear mappings and discusses affine and Euclidean spaces. Tensor analysis is explored first in Euclidean space, starting from a generalization of the concept of differentiability and proceeding towards concepts such as directional derivative, covariant derivative and integration based on differential forms. The final chapter addresses the role of smooth manifolds in modeling spaces other than Euclidean space, particularly the concepts of smooth atlas and tangent space, which are crucial to understanding the topic. Two of the most important concepts, namely the tangent bundle and the Lie derivative, are subsequently worked out.
A Student's Guide to Vectors and Tensors
Author: Daniel A. Fleisch
Publisher: Cambridge University Press
ISBN: 9780521171908
Category : Science
Languages : en
Pages : 206
Book Description
Vectors and tensors are among the most powerful problem-solving tools available, with applications ranging from mechanics and electromagnetics to general relativity. Understanding the nature and application of vectors and tensors is critically important to students of physics and engineering. Adopting the same approach used in his highly popular A Student's Guide to Maxwell's Equations, Fleisch explains vectors and tensors in plain language. Written for undergraduate and beginning graduate students, the book provides a thorough grounding in vectors and vector calculus before transitioning through contra and covariant components to tensors and their applications. Matrices and their algebra are reviewed on the book's supporting website, which also features interactive solutions to every problem in the text where students can work through a series of hints or choose to see the entire solution at once. Audio podcasts give students the opportunity to hear important concepts in the book explained by the author.
Publisher: Cambridge University Press
ISBN: 9780521171908
Category : Science
Languages : en
Pages : 206
Book Description
Vectors and tensors are among the most powerful problem-solving tools available, with applications ranging from mechanics and electromagnetics to general relativity. Understanding the nature and application of vectors and tensors is critically important to students of physics and engineering. Adopting the same approach used in his highly popular A Student's Guide to Maxwell's Equations, Fleisch explains vectors and tensors in plain language. Written for undergraduate and beginning graduate students, the book provides a thorough grounding in vectors and vector calculus before transitioning through contra and covariant components to tensors and their applications. Matrices and their algebra are reviewed on the book's supporting website, which also features interactive solutions to every problem in the text where students can work through a series of hints or choose to see the entire solution at once. Audio podcasts give students the opportunity to hear important concepts in the book explained by the author.