Author: Richard Bellman
Publisher: Courier Corporation
ISBN: 0486150135
Category : Mathematics
Languages : en
Pages : 178
Book Description
Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are used to drive the results of Poincaré and Liapounoff. Professor Bellman then surveys important results concerning the boundedness, stability, and asymptotic behavior of second-order linear differential equations. The final chapters explore significant nonlinear differential equations whose solutions may be completely described in terms of asymptotic behavior. Only real solutions of real equations are considered, and the treatment emphasizes the behavior of these solutions as the independent variable increases without limit.
Stability Theory of Differential Equations
Author: Richard Bellman
Publisher: Courier Corporation
ISBN: 0486150135
Category : Mathematics
Languages : en
Pages : 178
Book Description
Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are used to drive the results of Poincaré and Liapounoff. Professor Bellman then surveys important results concerning the boundedness, stability, and asymptotic behavior of second-order linear differential equations. The final chapters explore significant nonlinear differential equations whose solutions may be completely described in terms of asymptotic behavior. Only real solutions of real equations are considered, and the treatment emphasizes the behavior of these solutions as the independent variable increases without limit.
Publisher: Courier Corporation
ISBN: 0486150135
Category : Mathematics
Languages : en
Pages : 178
Book Description
Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are used to drive the results of Poincaré and Liapounoff. Professor Bellman then surveys important results concerning the boundedness, stability, and asymptotic behavior of second-order linear differential equations. The final chapters explore significant nonlinear differential equations whose solutions may be completely described in terms of asymptotic behavior. Only real solutions of real equations are considered, and the treatment emphasizes the behavior of these solutions as the independent variable increases without limit.
Introduction to the Theory and Application of Differential Equations with Deviating Arguments
Author: L.E. El'sgol'ts
Publisher: Academic Press
ISBN: 0080956149
Category : Computers
Languages : en
Pages : 356
Book Description
Introduction to the Theory and Application of Differential Equations with Deviating Arguments 2nd edition is a revised and substantially expanded edition of the well-known book of L. E. El’sgol’ts published under this same title by Nauka in 1964. Extensions of the theory of differential equations with deviating argument as well as the stimuli of developments within various fields of science and technology contribute to the need for a new edition. This theory in recent years has attracted the attention of vast numbers of researchers, interested both in the theory and its applications. The development of the foundations of the theory of differential equations with a deviating argument is still far from complete. This situation, of course, leaves its mark on our suggestions to the reader of the book and prevents as orderly and systematic a presentation as is usual for mathematical literature. However, it is hoped that in spite of these deficiencies the book will prove useful as a first acquaintanceship with the theory of differential equations with a deviating argument.
Publisher: Academic Press
ISBN: 0080956149
Category : Computers
Languages : en
Pages : 356
Book Description
Introduction to the Theory and Application of Differential Equations with Deviating Arguments 2nd edition is a revised and substantially expanded edition of the well-known book of L. E. El’sgol’ts published under this same title by Nauka in 1964. Extensions of the theory of differential equations with deviating argument as well as the stimuli of developments within various fields of science and technology contribute to the need for a new edition. This theory in recent years has attracted the attention of vast numbers of researchers, interested both in the theory and its applications. The development of the foundations of the theory of differential equations with a deviating argument is still far from complete. This situation, of course, leaves its mark on our suggestions to the reader of the book and prevents as orderly and systematic a presentation as is usual for mathematical literature. However, it is hoped that in spite of these deficiencies the book will prove useful as a first acquaintanceship with the theory of differential equations with a deviating argument.
Qualitative Theory of Differential Equations
Author: Viktor Vladimirovich Nemytskii
Publisher:
ISBN: 9780691652283
Category :
Languages : en
Pages : 0
Book Description
Book 22 in the Princeton Mathematical Series. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher:
ISBN: 9780691652283
Category :
Languages : en
Pages : 0
Book Description
Book 22 in the Princeton Mathematical Series. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Geometrical Methods in the Theory of Ordinary Differential Equations
Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 1461210372
Category : Mathematics
Languages : en
Pages : 366
Book Description
Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.
Publisher: Springer Science & Business Media
ISBN: 1461210372
Category : Mathematics
Languages : en
Pages : 366
Book Description
Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.
Basic Theory of Ordinary Differential Equations
Author: Po-Fang Hsieh
Publisher: Springer Science & Business Media
ISBN: 1461215064
Category : Mathematics
Languages : en
Pages : 480
Book Description
Providing readers with the very basic knowledge necessary to begin research on differential equations with professional ability, the selection of topics here covers the methods and results that are applicable in a variety of different fields. The book is divided into four parts. The first covers fundamental existence, uniqueness, smoothness with respect to data, and nonuniqueness. The second part describes the basic results concerning linear differential equations, while the third deals with nonlinear equations. In the last part the authors write about the basic results concerning power series solutions. Each chapter begins with a brief discussion of its contents and history, and hints and comments for many problems are given throughout. With 114 illustrations and 206 exercises, the book is suitable for a one-year graduate course, as well as a reference book for research mathematicians.
Publisher: Springer Science & Business Media
ISBN: 1461215064
Category : Mathematics
Languages : en
Pages : 480
Book Description
Providing readers with the very basic knowledge necessary to begin research on differential equations with professional ability, the selection of topics here covers the methods and results that are applicable in a variety of different fields. The book is divided into four parts. The first covers fundamental existence, uniqueness, smoothness with respect to data, and nonuniqueness. The second part describes the basic results concerning linear differential equations, while the third deals with nonlinear equations. In the last part the authors write about the basic results concerning power series solutions. Each chapter begins with a brief discussion of its contents and history, and hints and comments for many problems are given throughout. With 114 illustrations and 206 exercises, the book is suitable for a one-year graduate course, as well as a reference book for research mathematicians.
Differential Equations
Author: H. S. Bear
Publisher: Courier Corporation
ISBN: 0486143643
Category : Mathematics
Languages : en
Pages : 226
Book Description
First-rate introduction for undergraduates examines first order equations, complex-valued solutions, linear differential operators, the Laplace transform, Picard's existence theorem, and much more. Includes problems and solutions.
Publisher: Courier Corporation
ISBN: 0486143643
Category : Mathematics
Languages : en
Pages : 226
Book Description
First-rate introduction for undergraduates examines first order equations, complex-valued solutions, linear differential operators, the Laplace transform, Picard's existence theorem, and much more. Includes problems and solutions.
The Qualitative Theory of Ordinary Differential Equations
Author: Fred Brauer
Publisher: Courier Corporation
ISBN: 0486151514
Category : Mathematics
Languages : en
Pages : 325
Book Description
Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Focuses on stability theory and its applications to oscillation phenomena, self-excited oscillations, more. Includes exercises.
Publisher: Courier Corporation
ISBN: 0486151514
Category : Mathematics
Languages : en
Pages : 325
Book Description
Superb, self-contained graduate-level text covers standard theorems concerning linear systems, existence and uniqueness of solutions, and dependence on parameters. Focuses on stability theory and its applications to oscillation phenomena, self-excited oscillations, more. Includes exercises.
Galois Theory of Linear Differential Equations
Author: Marius van der Put
Publisher: Springer Science & Business Media
ISBN: 3642557503
Category : Mathematics
Languages : en
Pages : 446
Book Description
From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews
Publisher: Springer Science & Business Media
ISBN: 3642557503
Category : Mathematics
Languages : en
Pages : 446
Book Description
From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews
Ordinary Differential Equations and Stability Theory:
Author: David A. Sanchez
Publisher: Courier Dover Publications
ISBN: 0486837599
Category : Mathematics
Languages : en
Pages : 179
Book Description
This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.
Publisher: Courier Dover Publications
ISBN: 0486837599
Category : Mathematics
Languages : en
Pages : 179
Book Description
This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.
Differential Equations
Author: Steven G. Krantz
Publisher: CRC Press
ISBN: 1482247046
Category : Mathematics
Languages : en
Pages : 552
Book Description
"Krantz is a very prolific writer. He creates excellent examples and problem sets."-Albert Boggess, Professor and Director of the School of Mathematics and Statistical Sciences, Arizona State University, Tempe, USADesigned for a one- or two-semester undergraduate course, Differential Equations: Theory, Technique and Practice, Second Edition educa
Publisher: CRC Press
ISBN: 1482247046
Category : Mathematics
Languages : en
Pages : 552
Book Description
"Krantz is a very prolific writer. He creates excellent examples and problem sets."-Albert Boggess, Professor and Director of the School of Mathematics and Statistical Sciences, Arizona State University, Tempe, USADesigned for a one- or two-semester undergraduate course, Differential Equations: Theory, Technique and Practice, Second Edition educa