Author: Theodore Edward Harris
Publisher: Springer
ISBN: 9783642518683
Category : Mathematics
Languages : en
Pages : 232
Book Description
It was about ninety years ago that GALTON and WATSON, in treating the problem of the extinction of family names, showed how probability theory could be applied to study the effects of chance on the development of families or populations. They formulated a mathematical model, which was neglected for many years after their original work, but was studied again in isolated papers in the twenties and thirties of this century. During the past fifteen or twenty years, the model and its general izations have been treated extensively, for their mathematical interest and as a theoretical basis for studies of populations of such objects as genes, neutrons, or cosmic rays. The generalizations of the GaIton Wa,tson model to be studied in this book can appropriately be called branching processes; the term has become common since its use in a more restricted sense in a paper by KOLMOGOROV and DMITRIEV in 1947 (see Chapter II). We may think of a branching process as a mathematical representation of the development of a population whose members reproduce and die, subject to laws of chance. The objects may be of different types, depending on their age, energy, position, or other factors. However, they must not interfere with one another. This assump tion, which unifies the mathematical theory, seems justified for some populations of physical particles such as neutrons or cosmic rays, but only under very restricted circumstances for biological populations.
The Theory of Branching Processes
Author: Theodore Edward Harris
Publisher: Springer
ISBN: 9783642518683
Category : Mathematics
Languages : en
Pages : 232
Book Description
It was about ninety years ago that GALTON and WATSON, in treating the problem of the extinction of family names, showed how probability theory could be applied to study the effects of chance on the development of families or populations. They formulated a mathematical model, which was neglected for many years after their original work, but was studied again in isolated papers in the twenties and thirties of this century. During the past fifteen or twenty years, the model and its general izations have been treated extensively, for their mathematical interest and as a theoretical basis for studies of populations of such objects as genes, neutrons, or cosmic rays. The generalizations of the GaIton Wa,tson model to be studied in this book can appropriately be called branching processes; the term has become common since its use in a more restricted sense in a paper by KOLMOGOROV and DMITRIEV in 1947 (see Chapter II). We may think of a branching process as a mathematical representation of the development of a population whose members reproduce and die, subject to laws of chance. The objects may be of different types, depending on their age, energy, position, or other factors. However, they must not interfere with one another. This assump tion, which unifies the mathematical theory, seems justified for some populations of physical particles such as neutrons or cosmic rays, but only under very restricted circumstances for biological populations.
Publisher: Springer
ISBN: 9783642518683
Category : Mathematics
Languages : en
Pages : 232
Book Description
It was about ninety years ago that GALTON and WATSON, in treating the problem of the extinction of family names, showed how probability theory could be applied to study the effects of chance on the development of families or populations. They formulated a mathematical model, which was neglected for many years after their original work, but was studied again in isolated papers in the twenties and thirties of this century. During the past fifteen or twenty years, the model and its general izations have been treated extensively, for their mathematical interest and as a theoretical basis for studies of populations of such objects as genes, neutrons, or cosmic rays. The generalizations of the GaIton Wa,tson model to be studied in this book can appropriately be called branching processes; the term has become common since its use in a more restricted sense in a paper by KOLMOGOROV and DMITRIEV in 1947 (see Chapter II). We may think of a branching process as a mathematical representation of the development of a population whose members reproduce and die, subject to laws of chance. The objects may be of different types, depending on their age, energy, position, or other factors. However, they must not interfere with one another. This assump tion, which unifies the mathematical theory, seems justified for some populations of physical particles such as neutrons or cosmic rays, but only under very restricted circumstances for biological populations.
Branching Processes
Author: Asmussen
Publisher: Springer Science & Business Media
ISBN: 1461581559
Category : Mathematics
Languages : en
Pages : 468
Book Description
Branching processes form one of the classical fields of applied probability and are still an active area of research. The field has by now grown so large and diverse that a complete and unified treat ment is hardly possible anymore, let alone in one volume. So, our aim here has been to single out some of the more recent developments and to present them with sufficient background material to obtain a largely self-contained treatment intended to supplement previous mo nographs rather than to overlap them. The body of the text is divided into four parts, each of its own flavor. Part A is a short introduction, stressing examples and applications. In Part B we give a self-contained and up-to-date pre sentation of the classical limit theory of simple branching processes, viz. the Gal ton-Watson ( Bienayme-G-W) process and i ts continuous time analogue. Part C deals with the limit theory of Il!arkov branching processes with a general set of types under conditions tailored to (multigroup) branching diffusions on bounded domains, a setting which also covers the ordinary multitype case. Whereas the point of view in Parts A and B is quite pedagogical, the aim of Part C is to treat a large subfield to the highest degree of generality and completeness possi"ble. Thus the exposition there is at times quite technical.
Publisher: Springer Science & Business Media
ISBN: 1461581559
Category : Mathematics
Languages : en
Pages : 468
Book Description
Branching processes form one of the classical fields of applied probability and are still an active area of research. The field has by now grown so large and diverse that a complete and unified treat ment is hardly possible anymore, let alone in one volume. So, our aim here has been to single out some of the more recent developments and to present them with sufficient background material to obtain a largely self-contained treatment intended to supplement previous mo nographs rather than to overlap them. The body of the text is divided into four parts, each of its own flavor. Part A is a short introduction, stressing examples and applications. In Part B we give a self-contained and up-to-date pre sentation of the classical limit theory of simple branching processes, viz. the Gal ton-Watson ( Bienayme-G-W) process and i ts continuous time analogue. Part C deals with the limit theory of Il!arkov branching processes with a general set of types under conditions tailored to (multigroup) branching diffusions on bounded domains, a setting which also covers the ordinary multitype case. Whereas the point of view in Parts A and B is quite pedagogical, the aim of Part C is to treat a large subfield to the highest degree of generality and completeness possi"ble. Thus the exposition there is at times quite technical.
Branching Processes
Author: Krishna B. Athreya
Publisher: Springer Science & Business Media
ISBN: 3642653715
Category : Mathematics
Languages : en
Pages : 301
Book Description
The purpose of this book is to give a unified treatment of the limit theory of branching processes. Since the publication of the important book of T E. Harris (Theory of Branching Processes, Springer, 1963) the subject has developed and matured significantly. Many of the classical limit laws are now known in their sharpest form, and there are new proofs that give insight into the results. Our work deals primarily with this decade, and thus has very little overlap with that of Harris. Only enough material is repeated to make the treatment essentially self-contained. For example, certain foundational questions on the construction of processes, to which we have nothing new to add, are not developed. There is a natural classification of branching processes according to their criticality condition, their time parameter, the single or multi-type particle cases, the Markovian or non-Markovian character of the pro cess, etc. We have tried to avoid the rather uneconomical and un enlightening approach of treating these categories independently, and by a series of similar but increasingly complicated techniques. The basic Galton-Watson process is developed in great detail in Chapters I and II.
Publisher: Springer Science & Business Media
ISBN: 3642653715
Category : Mathematics
Languages : en
Pages : 301
Book Description
The purpose of this book is to give a unified treatment of the limit theory of branching processes. Since the publication of the important book of T E. Harris (Theory of Branching Processes, Springer, 1963) the subject has developed and matured significantly. Many of the classical limit laws are now known in their sharpest form, and there are new proofs that give insight into the results. Our work deals primarily with this decade, and thus has very little overlap with that of Harris. Only enough material is repeated to make the treatment essentially self-contained. For example, certain foundational questions on the construction of processes, to which we have nothing new to add, are not developed. There is a natural classification of branching processes according to their criticality condition, their time parameter, the single or multi-type particle cases, the Markovian or non-Markovian character of the pro cess, etc. We have tried to avoid the rather uneconomical and un enlightening approach of treating these categories independently, and by a series of similar but increasingly complicated techniques. The basic Galton-Watson process is developed in great detail in Chapters I and II.
Branching Processes
Author: Patsy Haccou
Publisher: Cambridge University Press
ISBN: 9780521832205
Category : Mathematics
Languages : en
Pages : 342
Book Description
This book covers the mathematical idea of branching processes, and tailors it for a biological audience.
Publisher: Cambridge University Press
ISBN: 9780521832205
Category : Mathematics
Languages : en
Pages : 342
Book Description
This book covers the mathematical idea of branching processes, and tailors it for a biological audience.
Measure-Valued Branching Markov Processes
Author: Zenghu Li
Publisher: Springer Science & Business Media
ISBN: 3642150047
Category : Mathematics
Languages : en
Pages : 356
Book Description
Measure-valued branching processes arise as high density limits of branching particle systems. The Dawson-Watanabe superprocess is a special class of those. The author constructs superprocesses with Borel right underlying motions and general branching mechanisms and shows the existence of their Borel right realizations. He then uses transformations to derive the existence and regularity of several different forms of the superprocesses. This treatment simplifies the constructions and gives useful perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The most important feature of the book is the systematic treatment of immigration superprocesses and generalized Ornstein--Uhlenbeck processes based on skew convolution semigroups. The volume addresses researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.
Publisher: Springer Science & Business Media
ISBN: 3642150047
Category : Mathematics
Languages : en
Pages : 356
Book Description
Measure-valued branching processes arise as high density limits of branching particle systems. The Dawson-Watanabe superprocess is a special class of those. The author constructs superprocesses with Borel right underlying motions and general branching mechanisms and shows the existence of their Borel right realizations. He then uses transformations to derive the existence and regularity of several different forms of the superprocesses. This treatment simplifies the constructions and gives useful perspectives. Martingale problems of superprocesses are discussed under Feller type assumptions. The most important feature of the book is the systematic treatment of immigration superprocesses and generalized Ornstein--Uhlenbeck processes based on skew convolution semigroups. The volume addresses researchers in measure-valued processes, branching processes, stochastic analysis, biological and genetic models, and graduate students in probability theory and stochastic processes.
Branching Processes in Biology
Author: Marek Kimmel
Publisher: Springer Science & Business Media
ISBN: 0387216391
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book introduces biological examples of Branching Processes from molecular and cellular biology as well as from the fields of human evolution and medicine and discusses them in the context of the relevant mathematics. It provides a useful introduction to how the modeling can be done and for what types of problems branching processes can be used.
Publisher: Springer Science & Business Media
ISBN: 0387216391
Category : Mathematics
Languages : en
Pages : 242
Book Description
This book introduces biological examples of Branching Processes from molecular and cellular biology as well as from the fields of human evolution and medicine and discusses them in the context of the relevant mathematics. It provides a useful introduction to how the modeling can be done and for what types of problems branching processes can be used.
Spatial Branching Processes, Random Snakes and Partial Differential Equations
Author: Jean-Francois Le Gall
Publisher: Birkhäuser
ISBN: 3034886837
Category : Mathematics
Languages : en
Pages : 170
Book Description
This book introduces several remarkable new probabilistic objects that combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial differential equations (PDE). The Brownian snake approach is used to give a powerful representation of superprocesses and also to investigate connections between superprocesses and PDEs. These are notable because almost every important probabilistic question corresponds to a significant analytic problem.
Publisher: Birkhäuser
ISBN: 3034886837
Category : Mathematics
Languages : en
Pages : 170
Book Description
This book introduces several remarkable new probabilistic objects that combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial differential equations (PDE). The Brownian snake approach is used to give a powerful representation of superprocesses and also to investigate connections between superprocesses and PDEs. These are notable because almost every important probabilistic question corresponds to a significant analytic problem.
Statistical Inference for Branching Processes
Author: Peter Guttorp
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 232
Book Description
An examination of the difficulties that statistical theory and, in particular, estimation theory can encounter within the area of dependent data. This is achieved through the study of the theory of branching processes starting with the demographic question: what is the probability that a family name becomes extinct? Contains observations on the generation sizes of the Bienaymé-Galton-Watson (BGW) process. Various parameters are estimated and branching process theory is contrasted to a Bayesian approach. Illustrations of branching process theory applications are shown for particular problems.
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 232
Book Description
An examination of the difficulties that statistical theory and, in particular, estimation theory can encounter within the area of dependent data. This is achieved through the study of the theory of branching processes starting with the demographic question: what is the probability that a family name becomes extinct? Contains observations on the generation sizes of the Bienaymé-Galton-Watson (BGW) process. Various parameters are estimated and branching process theory is contrasted to a Bayesian approach. Illustrations of branching process theory applications are shown for particular problems.
Neutron Fluctuations
Author: Imre Pazsit
Publisher: Elsevier
ISBN: 0080550436
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
The transport of neutrons in a multiplying system is an area of branching processes with a clear formalism. Neutron Fluctuations presents an account of the mathematical tools used in describing branching processes, which are then used to derive a large number of properties of the neutron distribution in multiplying systems with or without an external source. In the second part of the book, the theory is applied to the description of the neutron fluctuations in nuclear reactor cores as well as in small samples of fissile material. The question of how to extract information about the system under study is discussed. In particular the measurement of the reactivity of subcritical cores, driven with various Poisson and non-Poisson (pulsed) sources, and the identification of fissile material samples, is illustrated. The book gives pragmatic information for those planning and executing and evaluating experiments on such systems. - Gives a complete treatise of the mathematics of branching particle processes, and in particular neutron fluctuations, in a self-contained manner - The first monograph containing the theory and application of neutron fluctuations in low power ADS (spallation and pulsed sources) - Suitable as a tutorial and handbook/reference book for scientists and graduate students - One of the authors is the founder of the mathematical theory of neutron fluctuations in zero power systems
Publisher: Elsevier
ISBN: 0080550436
Category : Technology & Engineering
Languages : en
Pages : 359
Book Description
The transport of neutrons in a multiplying system is an area of branching processes with a clear formalism. Neutron Fluctuations presents an account of the mathematical tools used in describing branching processes, which are then used to derive a large number of properties of the neutron distribution in multiplying systems with or without an external source. In the second part of the book, the theory is applied to the description of the neutron fluctuations in nuclear reactor cores as well as in small samples of fissile material. The question of how to extract information about the system under study is discussed. In particular the measurement of the reactivity of subcritical cores, driven with various Poisson and non-Poisson (pulsed) sources, and the identification of fissile material samples, is illustrated. The book gives pragmatic information for those planning and executing and evaluating experiments on such systems. - Gives a complete treatise of the mathematics of branching particle processes, and in particular neutron fluctuations, in a self-contained manner - The first monograph containing the theory and application of neutron fluctuations in low power ADS (spallation and pulsed sources) - Suitable as a tutorial and handbook/reference book for scientists and graduate students - One of the authors is the founder of the mathematical theory of neutron fluctuations in zero power systems
The Theory of Branching Processes
Author: Theodore Edward Harris
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 256
Book Description
It was about ninety years ago that GALTON and WATSON, in treating the problem of the extinction of family names, showed how probability theory could be applied to study the effects of chance on the development of families or populations. They formulated a mathematical model, which was neglected for many years after their original work, but was studied again in isolated papers in the twenties and thirties of this century. During the past fifteen or twenty years, the model and its general izations have been treated extensively, for their mathematical interest and as a theoretical basis for studies of populations of such objects as genes, neutrons, or cosmic rays. The generalizations of the GaIton Wa,tson model to be studied in this book can appropriately be called branching processes; the term has become common since its use in a more restricted sense in a paper by KOLMOGOROV and DMITRIEV in 1947 (see Chapter II). We may think of a branching process as a mathematical representation of the development of a population whose members reproduce and die, subject to laws of chance. The objects may be of different types, depending on their age, energy, position, or other factors. However, they must not interfere with one another. This assump tion, which unifies the mathematical theory, seems justified for some populations of physical particles such as neutrons or cosmic rays, but only under very restricted circumstances for biological populations.
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 256
Book Description
It was about ninety years ago that GALTON and WATSON, in treating the problem of the extinction of family names, showed how probability theory could be applied to study the effects of chance on the development of families or populations. They formulated a mathematical model, which was neglected for many years after their original work, but was studied again in isolated papers in the twenties and thirties of this century. During the past fifteen or twenty years, the model and its general izations have been treated extensively, for their mathematical interest and as a theoretical basis for studies of populations of such objects as genes, neutrons, or cosmic rays. The generalizations of the GaIton Wa,tson model to be studied in this book can appropriately be called branching processes; the term has become common since its use in a more restricted sense in a paper by KOLMOGOROV and DMITRIEV in 1947 (see Chapter II). We may think of a branching process as a mathematical representation of the development of a population whose members reproduce and die, subject to laws of chance. The objects may be of different types, depending on their age, energy, position, or other factors. However, they must not interfere with one another. This assump tion, which unifies the mathematical theory, seems justified for some populations of physical particles such as neutrons or cosmic rays, but only under very restricted circumstances for biological populations.