Book of Proof

Book of Proof PDF Author: Richard H. Hammack
Publisher:
ISBN: 9780989472111
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

Book of Proof

Book of Proof PDF Author: Richard H. Hammack
Publisher:
ISBN: 9780989472111
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

A Logical Introduction to Proof

A Logical Introduction to Proof PDF Author: Daniel W. Cunningham
Publisher: Springer Science & Business Media
ISBN: 1461436311
Category : Mathematics
Languages : en
Pages : 365

Get Book Here

Book Description
The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.

Transition to Higher Mathematics

Transition to Higher Mathematics PDF Author: Bob A. Dumas
Publisher: McGraw-Hill Education
ISBN: 9780071106474
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0

Get Book Here

Book Description
This book is written for students who have taken calculus and want to learn what "real mathematics" is.

Structural Proof Theory

Structural Proof Theory PDF Author: Sara Negri
Publisher: Cambridge University Press
ISBN: 9780521068420
Category : Mathematics
Languages : en
Pages : 279

Get Book Here

Book Description
A concise introduction to structural proof theory, a branch of logic studying the general structure of logical and mathematical proofs.

Subsystems of Second Order Arithmetic

Subsystems of Second Order Arithmetic PDF Author: Stephen George Simpson
Publisher: Cambridge University Press
ISBN: 052188439X
Category : Mathematics
Languages : en
Pages : 461

Get Book Here

Book Description
This volume examines appropriate axioms for mathematics to prove particular theorems in core areas.

The Structure of Proof

The Structure of Proof PDF Author: Michael L. O'Leary
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
For a one-semester freshman or sophomore level course on the fundamentals of proof writing or transition to advanced mathematics course. Rather than teach mathematics and the structure of proofs simultaneously, this text first introduces logic as the foundation of proofs and then demonstrates how logic applies to mathematical topics. This method ensures that the students gain a firm understanding of how logic interacts with mathematics and empowers them to solve more complex problems in future math courses.

Discrete Mathematics

Discrete Mathematics PDF Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342

Get Book Here

Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.

Understanding Mathematical Proof

Understanding Mathematical Proof PDF Author: John Taylor
Publisher: CRC Press
ISBN: 1466514914
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
The notion of proof is central to mathematics yet it is one of the most difficult aspects of the subject to teach and master. In particular, undergraduate mathematics students often experience difficulties in understanding and constructing proofs.Understanding Mathematical Proof describes the nature of mathematical proof, explores the various techn

Theorems, Corollaries, Lemmas, and Methods of Proof

Theorems, Corollaries, Lemmas, and Methods of Proof PDF Author: Richard J. Rossi
Publisher: John Wiley & Sons
ISBN: 1118030575
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
A hands-on introduction to the tools needed for rigorous and theoretical mathematical reasoning Successfully addressing the frustration many students experience as they make the transition from computational mathematics to advanced calculus and algebraic structures, Theorems, Corollaries, Lemmas, and Methods of Proof equips students with the tools needed to succeed while providing a firm foundation in the axiomatic structure of modern mathematics. This essential book: Clearly explains the relationship between definitions, conjectures, theorems, corollaries, lemmas, and proofs Reinforces the foundations of calculus and algebra Explores how to use both a direct and indirect proof to prove a theorem Presents the basic properties of real numbers/li> Discusses how to use mathematical induction to prove a theorem Identifies the different types of theorems Explains how to write a clear and understandable proof Covers the basic structure of modern mathematics and the key components of modern mathematics A complete chapter is dedicated to the different methods of proof such as forward direct proofs, proof by contrapositive, proof by contradiction, mathematical induction, and existence proofs. In addition, the author has supplied many clear and detailed algorithms that outline these proofs. Theorems, Corollaries, Lemmas, and Methods of Proof uniquely introduces scratch work as an indispensable part of the proof process, encouraging students to use scratch work and creative thinking as the first steps in their attempt to prove a theorem. Once their scratch work successfully demonstrates the truth of the theorem, the proof can be written in a clear and concise fashion. The basic structure of modern mathematics is discussed, and each of the key components of modern mathematics is defined. Numerous exercises are included in each chapter, covering a wide range of topics with varied levels of difficulty. Intended as a main text for mathematics courses such as Methods of Proof, Transitions to Advanced Mathematics, and Foundations of Mathematics, the book may also be used as a supplementary textbook in junior- and senior-level courses on advanced calculus, real analysis, and modern algebra.

Mathematical Analysis and Proof

Mathematical Analysis and Proof PDF Author: David S G Stirling
Publisher: Horwood Publishing
ISBN: 9781904275404
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
This fundamental and straightforward text addresses a weakness observed among present-day students, namely a lack of familiarity with formal proof. Beginning with the idea of mathematical proof and the need for it, associated technical and logical skills are developed with care and then brought to bear on the core material of analysis in such a lucid presentation that the development reads naturally and in a straightforward progression. Retaining the core text, the second edition has additional worked examples which users have indicated a need for, in addition to more emphasis on how analysis can be used to tell the accuracy of the approximations to the quantities of interest which arise in analytical limits. Addresses a lack of familiarity with formal proof, a weakness observed among present-day mathematics students Examines the idea of mathematical proof, the need for it and the technical and logical skills required