Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems PDF Author: Sacha Friedli
Publisher: Cambridge University Press
ISBN: 1107184827
Category : Mathematics
Languages : en
Pages : 643

Get Book Here

Book Description
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.

Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems PDF Author: Sacha Friedli
Publisher: Cambridge University Press
ISBN: 1107184827
Category : Mathematics
Languages : en
Pages : 643

Get Book Here

Book Description
A self-contained, mathematical introduction to the driving ideas in equilibrium statistical mechanics, studying important models in detail.

The Statistical Mechanics of Quantum Lattice Systems

The Statistical Mechanics of Quantum Lattice Systems PDF Author:
Publisher: European Mathematical Society
ISBN: 9783037190708
Category : Science
Languages : en
Pages : 402

Get Book Here

Book Description
Quantum statistical mechanics plays a major role in many fields such as thermodynamics, plasma physics, solid-state physics, and the study of stellar structure. While the theory of quantum harmonic oscillators is relatively simple, the case of anharmonic oscillators, a mathematical model of a localized quantum particle, is more complex and challenging. Moreover, infinite systems of interacting quantum anharmonic oscillators possess interesting ordering properties with respect to quantum stabilization. This book presents a rigorous approach to the statistical mechanics of such systems, in particular with respect to their actions on a crystal lattice. The text is addressed to both mathematicians and physicists, especially those who are concerned with the rigorous mathematical background of their results and the kind of problems that arise in quantum statistical mechanics. The reader will find here a concise collection of facts, concepts, and tools relevant for the application of path integrals and other methods based on measure and integration theory to problems of quantum physics, in particular the latest results in the mathematical theory of quantum anharmonic crystals. The methods developed in the book are also applicable to other problems involving infinitely many variables, for example, in biology and economics.

Equilibrium Statistical Mechanics of Lattice Models

Equilibrium Statistical Mechanics of Lattice Models PDF Author: David A. Lavis
Publisher: Springer
ISBN: 9401794308
Category : Science
Languages : en
Pages : 801

Get Book Here

Book Description
Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations. In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models. In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef—Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad\'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideas of scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization. Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.

The Statistical Mechanics of Lattice Gases, Volume I

The Statistical Mechanics of Lattice Gases, Volume I PDF Author: Barry Simon
Publisher: Princeton University Press
ISBN: 1400863430
Category : Science
Languages : en
Pages : 534

Get Book Here

Book Description
A state-of-the-art survey of both classical and quantum lattice gas models, this two-volume work will cover the rigorous mathematical studies of such models as the Ising and Heisenberg, an area in which scientists have made enormous strides during the past twenty-five years. This first volume addresses, among many topics, the mathematical background on convexity and Choquet theory, and presents an exhaustive study of the pressure including the Onsager solution of the two-dimensional Ising model, a study of the general theory of states in classical and quantum spin systems, and a study of high and low temperature expansions. The second volume will deal with the Peierls construction, infrared bounds, Lee-Yang theorems, and correlation inequality. This comprehensive work will be a useful reference not only to scientists working in mathematical statistical mechanics but also to those in related disciplines such as probability theory, chemical physics, and quantum field theory. It can also serve as a textbook for advanced graduate students. Originally published in 1993. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Statistical Mechanics of Lattice Systems

Statistical Mechanics of Lattice Systems PDF Author: David Lavis
Publisher: Springer Science & Business Media
ISBN: 3662038439
Category : Science
Languages : en
Pages : 376

Get Book Here

Book Description
This two-volume work provides a comprehensive study of the statistical mechanics of lattice models. It introduces readers to the main topics and the theory of phase transitions, building on a firm mathematical and physical basis. Volume 1 contains an account of mean-field and cluster variation methods successfully used in many applications in solid-state physics and theoretical chemistry, as well as an account of exact results for the Ising and six-vertex models and those derivable by transformation methods.

The Statistical Mechanics of Lattice Gases

The Statistical Mechanics of Lattice Gases PDF Author: Barry Simon
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Exactly Solved Models in Statistical Mechanics

Exactly Solved Models in Statistical Mechanics PDF Author: Rodney J. Baxter
Publisher: Elsevier
ISBN: 1483265943
Category : Science
Languages : en
Pages : 499

Get Book Here

Book Description
Exactly Solved Models in Statistical Mechanics

Physics and Mathematics of Quantum Many-Body Systems

Physics and Mathematics of Quantum Many-Body Systems PDF Author: Hal Tasaki
Publisher: Springer Nature
ISBN: 3030412652
Category : Technology & Engineering
Languages : en
Pages : 534

Get Book Here

Book Description
This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.

Statistical Mechanics

Statistical Mechanics PDF Author: R.K. Pathria
Publisher: Elsevier
ISBN: 1483186881
Category : Science
Languages : en
Pages : 542

Get Book Here

Book Description
Statistical Mechanics discusses the fundamental concepts involved in understanding the physical properties of matter in bulk on the basis of the dynamical behavior of its microscopic constituents. The book emphasizes the equilibrium states of physical systems. The text first details the statistical basis of thermodynamics, and then proceeds to discussing the elements of ensemble theory. The next two chapters cover the canonical and grand canonical ensemble. Chapter 5 deals with the formulation of quantum statistics, while Chapter 6 talks about the theory of simple gases. Chapters 7 and 8 examine the ideal Bose and Fermi systems. In the next three chapters, the book covers the statistical mechanics of interacting systems, which includes the method of cluster expansions, pseudopotentials, and quantized fields. Chapter 12 discusses the theory of phase transitions, while Chapter 13 discusses fluctuations. The book will be of great use to researchers and practitioners from wide array of disciplines, such as physics, chemistry, and engineering.

Convexity in the Theory of Lattice Gases

Convexity in the Theory of Lattice Gases PDF Author: Robert B. Israel
Publisher: Princeton University Press
ISBN: 1400868424
Category : Science
Languages : en
Pages : 257

Get Book Here

Book Description
In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses a version of a theorem by Bishop and Phelps to obtain existence results for phase transitions. Furthermore, he shows how the Gibbs Phase Rule and the existence of a wide variety of phase transitions follow from the general framework and the theory of convex functions. While the behavior of some of these phase transitions is very "pathological," others exhibit more "reasonable" behavior. As an example, the author considers the isotropic Heisenberg model. Formulating a version of the Gibbs Phase Rule using Hausdorff dimension, he shows that the finite dimensional subspaces satisfying this phase rule are generic. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.