Author: Sergei Yurievitch Pilyugin
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 212
Book Description
The Space of Dynamical Systems with the C0-topology
Author: Sergei Yurievitch Pilyugin
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 212
Book Description
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 212
Book Description
The Space of Dynamical Systems with the C0-Topology
Author: Sergei Yu. Pilyugin
Publisher: Springer
ISBN: 3540483144
Category : Mathematics
Languages : en
Pages : 197
Book Description
This book is an introduction to main methods and principal results in the theory of Co(remark: o is upper index!!)-small perturbations of dynamical systems. It is the first comprehensive treatment of this topic. In particular, Co(upper index!)-generic properties of dynamical systems, topological stability, perturbations of attractors, limit sets of domains are discussed. The book contains some new results (Lipschitz shadowing of pseudotrajectories in structurally stable diffeomorphisms for instance). The aim of the author was to simplify and to "visualize" some basic proofs, so the main part of the book is accessible to graduate students in pure and applied mathematics. The book will also be a basic reference for researchers in various fields of dynamical systems and their applications, especially for those who study attractors or pseudotrajectories generated by numerical methods.
Publisher: Springer
ISBN: 3540483144
Category : Mathematics
Languages : en
Pages : 197
Book Description
This book is an introduction to main methods and principal results in the theory of Co(remark: o is upper index!!)-small perturbations of dynamical systems. It is the first comprehensive treatment of this topic. In particular, Co(upper index!)-generic properties of dynamical systems, topological stability, perturbations of attractors, limit sets of domains are discussed. The book contains some new results (Lipschitz shadowing of pseudotrajectories in structurally stable diffeomorphisms for instance). The aim of the author was to simplify and to "visualize" some basic proofs, so the main part of the book is accessible to graduate students in pure and applied mathematics. The book will also be a basic reference for researchers in various fields of dynamical systems and their applications, especially for those who study attractors or pseudotrajectories generated by numerical methods.
Spaces of Dynamical Systems
Author: Sergei Yu. Pilyugin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110653990
Category : Science
Languages : en
Pages : 351
Book Description
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110653990
Category : Science
Languages : en
Pages : 351
Book Description
The General Topology of Dynamical Systems
Author: Ethan Akin
Publisher: American Mathematical Soc.
ISBN: 0821849328
Category : Mathematics
Languages : en
Pages : 273
Book Description
Recent work in dynamical systems theory has both highlighted certain topics in the pre-existing subject of topological dynamics (such as the construction of Lyapunov functions and various notions of stability) and also generated new concepts and results. This book collects these results, both old and new, and organises them into a natural foundation for all aspects of dynamical systems theory.
Publisher: American Mathematical Soc.
ISBN: 0821849328
Category : Mathematics
Languages : en
Pages : 273
Book Description
Recent work in dynamical systems theory has both highlighted certain topics in the pre-existing subject of topological dynamics (such as the construction of Lyapunov functions and various notions of stability) and also generated new concepts and results. This book collects these results, both old and new, and organises them into a natural foundation for all aspects of dynamical systems theory.
Topological Theory of Dynamical Systems
Author: N. Aoki
Publisher: Elsevier
ISBN: 008088721X
Category : Mathematics
Languages : en
Pages : 425
Book Description
This monograph aims to provide an advanced account of some aspects of dynamical systems in the framework of general topology, and is intended for use by interested graduate students and working mathematicians. Although some of the topics discussed are relatively new, others are not: this book is not a collection of research papers, but a textbook to present recent developments of the theory that could be the foundations for future developments.This book contains a new theory developed by the authors to deal with problems occurring in diffentiable dynamics that are within the scope of general topology. To follow it, the book provides an adequate foundation for topological theory of dynamical systems, and contains tools which are sufficiently powerful throughout the book.Graduate students (and some undergraduates) with sufficient knowledge of basic general topology, basic topological dynamics, and basic algebraic topology will find little difficulty in reading this book.
Publisher: Elsevier
ISBN: 008088721X
Category : Mathematics
Languages : en
Pages : 425
Book Description
This monograph aims to provide an advanced account of some aspects of dynamical systems in the framework of general topology, and is intended for use by interested graduate students and working mathematicians. Although some of the topics discussed are relatively new, others are not: this book is not a collection of research papers, but a textbook to present recent developments of the theory that could be the foundations for future developments.This book contains a new theory developed by the authors to deal with problems occurring in diffentiable dynamics that are within the scope of general topology. To follow it, the book provides an adequate foundation for topological theory of dynamical systems, and contains tools which are sufficiently powerful throughout the book.Graduate students (and some undergraduates) with sufficient knowledge of basic general topology, basic topological dynamics, and basic algebraic topology will find little difficulty in reading this book.
Dynamics of Topologically Generic Homeomorphisms
Author: Ethan Akin
Publisher: American Mathematical Soc.
ISBN: 0821833383
Category : Mathematics
Languages : en
Pages : 146
Book Description
The goal of this work is to describe the dynamics of generic homeomorphisms of certain compact metric spaces $X$. Here ``generic'' is used in the topological sense -- a property of homeomorphisms on $X$ is generic if the set of homeomorphisms with the property contains a residual subset (in the sense of Baire category) of the space of all homeomorphisms on $X$. The spaces $X$ we consider are those with enough local homogeneity to allow certain localized perturbations of homeomorphisms; for example, any compact manifold is such a space. We show that the dynamics of a generic homeomorphism is quite complicated, with a number of distinct dynamical behaviors coexisting (some resemble subshifts of finite type, others, which we call `generalized adding machines', appear strictly periodic when viewed to any finite precision, but are not actually periodic). Such a homeomorphism has infinitely many, intricately nested attractors and repellors, and uncountably many distinct dynamically-connected components of the chain recurrent set. We single out several types of these ``chain components'', and show that each type occurs densely (in an appropriate sense) in the chain recurrent set. We also identify one type that occurs generically in the chain recurrent set. We also show that, at least for $X$ a manifold, the chain recurrent set of a generic homeomorphism is a Cantor set, so its complement is open and dense. Somewhat surprisingly, there is a residual subset of $X$ consisting of points whose limit sets are chain components of a type other than the type of chain components that are residual in the space of all chain components. In fact, for each generic homeomorphism on $X$ there is a residual subset of points of $X$ satisfying a stability condition stronger than Lyapunov stability.
Publisher: American Mathematical Soc.
ISBN: 0821833383
Category : Mathematics
Languages : en
Pages : 146
Book Description
The goal of this work is to describe the dynamics of generic homeomorphisms of certain compact metric spaces $X$. Here ``generic'' is used in the topological sense -- a property of homeomorphisms on $X$ is generic if the set of homeomorphisms with the property contains a residual subset (in the sense of Baire category) of the space of all homeomorphisms on $X$. The spaces $X$ we consider are those with enough local homogeneity to allow certain localized perturbations of homeomorphisms; for example, any compact manifold is such a space. We show that the dynamics of a generic homeomorphism is quite complicated, with a number of distinct dynamical behaviors coexisting (some resemble subshifts of finite type, others, which we call `generalized adding machines', appear strictly periodic when viewed to any finite precision, but are not actually periodic). Such a homeomorphism has infinitely many, intricately nested attractors and repellors, and uncountably many distinct dynamically-connected components of the chain recurrent set. We single out several types of these ``chain components'', and show that each type occurs densely (in an appropriate sense) in the chain recurrent set. We also identify one type that occurs generically in the chain recurrent set. We also show that, at least for $X$ a manifold, the chain recurrent set of a generic homeomorphism is a Cantor set, so its complement is open and dense. Somewhat surprisingly, there is a residual subset of $X$ consisting of points whose limit sets are chain components of a type other than the type of chain components that are residual in the space of all chain components. In fact, for each generic homeomorphism on $X$ there is a residual subset of points of $X$ satisfying a stability condition stronger than Lyapunov stability.
Dynamics of Circle Mappings
Author: Edson de Faria
Publisher: Springer Nature
ISBN: 3031674952
Category :
Languages : en
Pages : 462
Book Description
Publisher: Springer Nature
ISBN: 3031674952
Category :
Languages : en
Pages : 462
Book Description
Essentials of Topology with Applications
Author: Steven G. Krantz
Publisher: CRC Press
ISBN: 1420089757
Category : Mathematics
Languages : en
Pages : 422
Book Description
Brings Readers Up to Speed in This Important and Rapidly Growing AreaSupported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological
Publisher: CRC Press
ISBN: 1420089757
Category : Mathematics
Languages : en
Pages : 422
Book Description
Brings Readers Up to Speed in This Important and Rapidly Growing AreaSupported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological
Introduction to the Modern Theory of Dynamical Systems
Author: Anatole Katok
Publisher: Cambridge University Press
ISBN: 9780521575577
Category : Mathematics
Languages : en
Pages : 828
Book Description
This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.
Publisher: Cambridge University Press
ISBN: 9780521575577
Category : Mathematics
Languages : en
Pages : 828
Book Description
This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.
Shadowing and Hyperbolicity
Author: Sergei Yu Pilyugin
Publisher: Springer
ISBN: 3319651846
Category : Mathematics
Languages : en
Pages : 228
Book Description
Focusing on the theory of shadowing of approximate trajectories (pseudotrajectories) of dynamical systems, this book surveys recent progress in establishing relations between shadowing and such basic notions from the classical theory of structural stability as hyperbolicity and transversality. Special attention is given to the study of "quantitative" shadowing properties, such as Lipschitz shadowing (it is shown that this property is equivalent to structural stability both for diffeomorphisms and smooth flows), and to the passage to robust shadowing (which is also equivalent to structural stability in the case of diffeomorphisms, while the situation becomes more complicated in the case of flows). Relations between the shadowing property of diffeomorphisms on their chain transitive sets and the hyperbolicity of such sets are also described. The book will allow young researchers in the field of dynamical systems to gain a better understanding of new ideas in the global qualitative theory. It will also be of interest to specialists in dynamical systems and their applications.
Publisher: Springer
ISBN: 3319651846
Category : Mathematics
Languages : en
Pages : 228
Book Description
Focusing on the theory of shadowing of approximate trajectories (pseudotrajectories) of dynamical systems, this book surveys recent progress in establishing relations between shadowing and such basic notions from the classical theory of structural stability as hyperbolicity and transversality. Special attention is given to the study of "quantitative" shadowing properties, such as Lipschitz shadowing (it is shown that this property is equivalent to structural stability both for diffeomorphisms and smooth flows), and to the passage to robust shadowing (which is also equivalent to structural stability in the case of diffeomorphisms, while the situation becomes more complicated in the case of flows). Relations between the shadowing property of diffeomorphisms on their chain transitive sets and the hyperbolicity of such sets are also described. The book will allow young researchers in the field of dynamical systems to gain a better understanding of new ideas in the global qualitative theory. It will also be of interest to specialists in dynamical systems and their applications.