Author: J. M. Ortega
Publisher: Elsevier
ISBN: 1483276724
Category : Mathematics
Languages : en
Pages : 593
Book Description
Computer Science and Applied Mathematics: Iterative Solution of Nonlinear Equations in Several Variables presents a survey of the basic theoretical results about nonlinear equations in n dimensions and analysis of the major iterative methods for their numerical solution. This book discusses the gradient mappings and minimization, contractions and the continuation property, and degree of a mapping. The general iterative and minimization methods, rates of convergence, and one-step stationary and multistep methods are also elaborated. This text likewise covers the contractions and nonlinear majorants, convergence under partial ordering, and convergence of minimization methods. This publication is a good reference for specialists and readers with an extensive functional analysis background.
Iterative Solution of Nonlinear Equations in Several Variables
Author: J. M. Ortega
Publisher: Elsevier
ISBN: 1483276724
Category : Mathematics
Languages : en
Pages : 593
Book Description
Computer Science and Applied Mathematics: Iterative Solution of Nonlinear Equations in Several Variables presents a survey of the basic theoretical results about nonlinear equations in n dimensions and analysis of the major iterative methods for their numerical solution. This book discusses the gradient mappings and minimization, contractions and the continuation property, and degree of a mapping. The general iterative and minimization methods, rates of convergence, and one-step stationary and multistep methods are also elaborated. This text likewise covers the contractions and nonlinear majorants, convergence under partial ordering, and convergence of minimization methods. This publication is a good reference for specialists and readers with an extensive functional analysis background.
Publisher: Elsevier
ISBN: 1483276724
Category : Mathematics
Languages : en
Pages : 593
Book Description
Computer Science and Applied Mathematics: Iterative Solution of Nonlinear Equations in Several Variables presents a survey of the basic theoretical results about nonlinear equations in n dimensions and analysis of the major iterative methods for their numerical solution. This book discusses the gradient mappings and minimization, contractions and the continuation property, and degree of a mapping. The general iterative and minimization methods, rates of convergence, and one-step stationary and multistep methods are also elaborated. This text likewise covers the contractions and nonlinear majorants, convergence under partial ordering, and convergence of minimization methods. This publication is a good reference for specialists and readers with an extensive functional analysis background.
Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications
Author: Nikolay Sidorov
Publisher: Springer Science & Business Media
ISBN: 940172122X
Category : Mathematics
Languages : en
Pages : 563
Book Description
This book concentrates on the branching solutions of nonlinear operator equations and the theory of degenerate operator-differential equations especially applicable to algorithmic analysis and nonlinear PDE's in mechanics and mathematical physics. The authors expound the recent result on the generalized eigen-value problem, the perturbation method, Schmidt's pseudo-inversion for regularization of linear and nonlinear problems in the branching theory and group methods in bifurcation theory. The book covers regular iterative methods in a neighborhood of branch points and the theory of differential-operator equations with a non-invertible operator in the main expression is constructed. Various recent results on theorems of existence are given including asymptotic, approximate and group methods.
Publisher: Springer Science & Business Media
ISBN: 940172122X
Category : Mathematics
Languages : en
Pages : 563
Book Description
This book concentrates on the branching solutions of nonlinear operator equations and the theory of degenerate operator-differential equations especially applicable to algorithmic analysis and nonlinear PDE's in mechanics and mathematical physics. The authors expound the recent result on the generalized eigen-value problem, the perturbation method, Schmidt's pseudo-inversion for regularization of linear and nonlinear problems in the branching theory and group methods in bifurcation theory. The book covers regular iterative methods in a neighborhood of branch points and the theory of differential-operator equations with a non-invertible operator in the main expression is constructed. Various recent results on theorems of existence are given including asymptotic, approximate and group methods.
Topological Methods in Differential Equations and Inclusions
Author: Andrzej Granas
Publisher: Springer Science & Business Media
ISBN: 9401103399
Category : Mathematics
Languages : en
Pages : 531
Book Description
The papers collected in this volume are contributions to the 33rd session of the Seminaire de Mathematiques Superieures (SMS) on "Topological Methods in Differential Equations and Inclusions". This session of the SMS took place at the Universite de Montreal in July 1994 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together a considerable group of young researchers from various parts of the world and to present to them coherent surveys of some of the most recent advances in this area of Nonlinear Analysis. During the meeting 89 mathematicians from 20 countries have had the opportunity to get acquainted with various aspects of the subjects treated in the lectures as well as the chance to exchange ideas and learn about new problems arising in the field. The main topics teated in this ASI were the following: Fixed point theory for single- and multi-valued mappings including topological degree and its generalizations, and topological transversality theory; existence and multiplicity results for ordinary differential equations and inclusions; bifurcation and stability problems; ordinary differential equations in Banach spaces; second order differential equations on manifolds; the topological structure of the solution set of differential inclusions; effects of delay perturbations on dynamics of retarded delay differential equations; dynamics of reaction diffusion equations; non smooth critical point theory and applications to boundary value problems for quasilinear elliptic equations.
Publisher: Springer Science & Business Media
ISBN: 9401103399
Category : Mathematics
Languages : en
Pages : 531
Book Description
The papers collected in this volume are contributions to the 33rd session of the Seminaire de Mathematiques Superieures (SMS) on "Topological Methods in Differential Equations and Inclusions". This session of the SMS took place at the Universite de Montreal in July 1994 and was a NATO Advanced Study Institute (ASI). The aim of the ASI was to bring together a considerable group of young researchers from various parts of the world and to present to them coherent surveys of some of the most recent advances in this area of Nonlinear Analysis. During the meeting 89 mathematicians from 20 countries have had the opportunity to get acquainted with various aspects of the subjects treated in the lectures as well as the chance to exchange ideas and learn about new problems arising in the field. The main topics teated in this ASI were the following: Fixed point theory for single- and multi-valued mappings including topological degree and its generalizations, and topological transversality theory; existence and multiplicity results for ordinary differential equations and inclusions; bifurcation and stability problems; ordinary differential equations in Banach spaces; second order differential equations on manifolds; the topological structure of the solution set of differential inclusions; effects of delay perturbations on dynamics of retarded delay differential equations; dynamics of reaction diffusion equations; non smooth critical point theory and applications to boundary value problems for quasilinear elliptic equations.
Numerical Continuation Methods
Author: Eugene L. Allgower
Publisher: Springer Science & Business Media
ISBN: 3642612571
Category : Mathematics
Languages : en
Pages : 402
Book Description
Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.
Publisher: Springer Science & Business Media
ISBN: 3642612571
Category : Mathematics
Languages : en
Pages : 402
Book Description
Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.
ITERATIVE METHODS FOR THE SOLUTIONS OF NONLINEAR OPERATOR EQUATIONS IN HILBERT SPACE.
Author: MOHAMMED ZUHAIR ZAKI NASHED
Publisher:
ISBN:
Category :
Languages : en
Pages : 340
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 340
Book Description
Introduction to Numerical Continuation Methods
Author: Eugene L. Allgower
Publisher: SIAM
ISBN: 9780898719154
Category : Mathematics
Languages : en
Pages : 413
Book Description
Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. The book also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals. To help potential users of numerical continuation methods create programs adapted to their particular needs, this book presents pseudo-codes and Fortran codes as illustrations. Since it first appeared, many specialized packages for treating such varied problems as bifurcation, polynomial systems, eigenvalues, economic equilibria, optimization, and the approximation of manifolds have been written. The original extensive bibliography has been updated in the SIAM Classics edition to include more recent references and several URLs so users can look for codes to suit their needs. Audience: this book continues to be useful for researchers and graduate students in mathematics, sciences, engineering, economics, and business. A background in elementary analysis and linear algebra are adequate prerequisites for reading this book; some knowledge from a first course in numerical analysis may also be helpful.
Publisher: SIAM
ISBN: 9780898719154
Category : Mathematics
Languages : en
Pages : 413
Book Description
Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. The book also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals. To help potential users of numerical continuation methods create programs adapted to their particular needs, this book presents pseudo-codes and Fortran codes as illustrations. Since it first appeared, many specialized packages for treating such varied problems as bifurcation, polynomial systems, eigenvalues, economic equilibria, optimization, and the approximation of manifolds have been written. The original extensive bibliography has been updated in the SIAM Classics edition to include more recent references and several URLs so users can look for codes to suit their needs. Audience: this book continues to be useful for researchers and graduate students in mathematics, sciences, engineering, economics, and business. A background in elementary analysis and linear algebra are adequate prerequisites for reading this book; some knowledge from a first course in numerical analysis may also be helpful.
Topics in Critical Point Theory
Author: Kanishka Perera
Publisher: Cambridge University Press
ISBN: 110702966X
Category : Mathematics
Languages : en
Pages : 171
Book Description
Provides an introduction to critical point theory and shows how it solves many difficult problems.
Publisher: Cambridge University Press
ISBN: 110702966X
Category : Mathematics
Languages : en
Pages : 171
Book Description
Provides an introduction to critical point theory and shows how it solves many difficult problems.
Finite Elements of Nonlinear Continua
Author: J. T. Oden
Publisher: Courier Corporation
ISBN: 0486317900
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view. The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical solution of the equations governing the discrete model. Though the theory and methods are sufficiently general to be applied to any nonlinear problem, emphasis has been placed on problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity. Problems in rarefied gas dynamics and nonlinear partial differential equations are also examined. Other topics include topological properties of finite element models, applications to linear and nonlinear boundary value problems, and discrete models of nonlinear thermomechanical behavior of dissipative media. This comprehensive text is valuable not only to students of structural analysis and continuum mechanics but also to professionals researching the numerical analysis of continua
Publisher: Courier Corporation
ISBN: 0486317900
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view. The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical solution of the equations governing the discrete model. Though the theory and methods are sufficiently general to be applied to any nonlinear problem, emphasis has been placed on problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity. Problems in rarefied gas dynamics and nonlinear partial differential equations are also examined. Other topics include topological properties of finite element models, applications to linear and nonlinear boundary value problems, and discrete models of nonlinear thermomechanical behavior of dissipative media. This comprehensive text is valuable not only to students of structural analysis and continuum mechanics but also to professionals researching the numerical analysis of continua
Del Pezzo Surfaces of Degree Four
Author: Boris E. KunyavskiÄ
Publisher:
ISBN:
Category : Homology theory
Languages : en
Pages : 124
Book Description
Publisher:
ISBN:
Category : Homology theory
Languages : en
Pages : 124
Book Description
Sign-Changing Critical Point Theory
Author: Wenming Zou
Publisher: Springer Science & Business Media
ISBN: 0387766588
Category : Mathematics
Languages : en
Pages : 288
Book Description
Many nonlinear problems in physics, engineering, biology and social sciences can be reduced to finding critical points of functionals. While minimax and Morse theories provide answers to many situations and problems on the existence of multiple critical points of a functional, they often cannot provide much-needed additional properties of these critical points. Sign-changing critical point theory has emerged as a new area of rich research on critical points of a differentiable functional with important applications to nonlinear elliptic PDEs. This book is intended for advanced graduate students and researchers involved in sign-changing critical point theory, PDEs, global analysis, and nonlinear functional analysis.
Publisher: Springer Science & Business Media
ISBN: 0387766588
Category : Mathematics
Languages : en
Pages : 288
Book Description
Many nonlinear problems in physics, engineering, biology and social sciences can be reduced to finding critical points of functionals. While minimax and Morse theories provide answers to many situations and problems on the existence of multiple critical points of a functional, they often cannot provide much-needed additional properties of these critical points. Sign-changing critical point theory has emerged as a new area of rich research on critical points of a differentiable functional with important applications to nonlinear elliptic PDEs. This book is intended for advanced graduate students and researchers involved in sign-changing critical point theory, PDEs, global analysis, and nonlinear functional analysis.