The Shock Dynamics of Stable Multidimensional Detonation

The Shock Dynamics of Stable Multidimensional Detonation PDF Author: D. Scott Stewart
Publisher:
ISBN:
Category : Detonation waves
Languages : en
Pages : 50

Get Book Here

Book Description

The Shock Dynamics of Stable Multidimensional Detonation

The Shock Dynamics of Stable Multidimensional Detonation PDF Author: D. Scott Stewart
Publisher:
ISBN:
Category : Detonation waves
Languages : en
Pages : 50

Get Book Here

Book Description


Shock Waves Science and Technology Library, Vol. 6

Shock Waves Science and Technology Library, Vol. 6 PDF Author: F. Zhang
Publisher: Springer Science & Business Media
ISBN: 3642229670
Category : Science
Languages : en
Pages : 482

Get Book Here

Book Description
This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with the fundamental theory of detonation physics in gaseous and condensed phase reactive media. The detonation process involves complex chemical reaction and fluid dynamics, accompanied by intricate effects of heat, light, electricity and magnetism - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The seven extensive chapters contained in this volume are: - Chemical Equilibrium Detonation (S Bastea and LE Fried) - Steady One-Dimensional Detonations (A Higgins) - Detonation Instability (HD Ng and F Zhang) - Dynamic Parameters of Detonation (AA Vasiliev) - Multi-Scaled Cellular Detonation (D Desbordes and HN Presles) - Condensed Matter Detonation: Theory and Practice (C Tarver) - Theory of Detonation Shock Dynamics (JB Bdzil and DS Stewart) The chapters are thematically interrelated in a systematic descriptive approach, though, each chapter is self-contained and can be read independently from the others. It offers a timely reference of theoretical detonation physics for graduate students as well as professional scientists and engineers.

Detonation Phenomena of Condensed Explosives

Detonation Phenomena of Condensed Explosives PDF Author: Shiro Kubota
Publisher: Springer Nature
ISBN: 9811953074
Category : Science
Languages : en
Pages : 298

Get Book Here

Book Description
This book presents fundamental theory of shock and detonation waves as well as selected studies in detonation research in Japan, contributed by selected experts in safety research on explosives, development of industrial explosives, and application of explosives. It also reports detonation research in Japan featuring industrial explosives that include ammonium nitrate-based explosives and liquid explosives. Intended as a monographic-style book, it consistently uses technical terms and symbols and creates organic links between various detonation phenomena in application of explosives, fundamental theory of detonation waves, measurement methods, and individual studies. Among other features, the book presents a historical perspective of shock wave and detonation research in Japan, pedagogical materials for young researchers in detonation physics, and an introduction to works in Japan, including equations of state, which are worthy of attention but about which very little is known internationally. Further, the concise pedagogical chapters also characterize this book as a primer of detonation of condensed explosives and help readers start their own research.

Parallel Algorithms Applied to Problems in Two Dimensional Detonation Shock Dynamics

Parallel Algorithms Applied to Problems in Two Dimensional Detonation Shock Dynamics PDF Author: Alberto M. Hernandez
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This design and applications project consists in the development of a parallel extension for a two-dimensional Detonation Shock Dynamics code, and to demonstrate how it can be applied for solving engineering problems in detonation physics. Detonation Shock Dynamics (DSD) is an asymptotic theory that describes the evolution of a multidimensional curve detonation shock in terms of an intrinsic evolution equation for the shock surface. Full-LS-DSD2D is a full level set Detonation Shock Dynamics code in Fortran 77 written by Dr. John Bdzil specifically for this project. A level set function numerical algorithm which embeds the two-dimensional detonation front in a three-dimensional filed function, phi(x,y,t), is used to solve for the location of the detonation front, which is given by phi(x,y,t) = 0. The code solves a modified Level Set PDE which maintains phi(x,y,t) as a distance function and uses a fully explicit. A parallel extension of the code was designed, IPC-DSD2D (Illinois Parallel Cluster DSD2D), as a Message Passing model using an MPI interface. IPC-DSD2D was benchmarked for scalability, accuracy and overall performance. Benchmarking was performed on a vertical rate stick problem that had ideal load balancing properties. The test problem was run on three different computer architectures: the Turing Cluster at the University of Illinois Urbana-Champaign, an eight core Macintosh Mac Pro, and NCSA0́9s SGI Altix (Cobalt).The benchmarking of the code showed very good performance metrics; the speedup and efficiency where high, and behaved in a stable and predictable pattern. After the code was verified and tested for performance and efficiency, it was used in a shape optimization study. A multicomponent nonlinear optimization system was built to generate optimal, shaped charge geometries using Detonation Shock Dynamics. The idea was to use IPC-DSD2D to estimate the shock pressure along a shaped charge liner and the normal shock velocity at the apex of the liner. These flow variables were then to be used as inputs for a Lagrangian finite element code to determine the shape of the jet that is formed by the detonation shock pressure crushing the liner. Through a set of constrained objective functions, a nonlinear optimizer, a shape can be found that has optimal jet properties. By running a DSD simulation of a simplified shaped charge, it was successfully shown how DSD could be used in the design of shaped charges. This thesis only describes the optimization system, and did not simulate the design loop. This thesis is divided into ten chapters. Chapters 1 and 2 briefly describe the theory of DSD and some necessary concepts in parallel computing design. Chapters 3 through 5 talk about the mathematical and numerical model used in DSD2D, and the parallel implementation of the code. Chapter 6 shows numerical results using IPC-DSD2D and Chapter 7 shows the parallel benchmarking of the code using the three computer architectures mentioned earlier. Chapter 8 describes the optimization system using DSD to find optimal shape charge geometries. Chapter 9 shows how to extend IPC-DSD2D for a three-dimensional DSD code [5]. Chapter 10 has the conclusions and final thoughts about the parallel implementation of Full-LS-DSD2D and the optimization system for designing shape charges using DSD.

Proceedings

Proceedings PDF Author:
Publisher:
ISBN:
Category : Detonation
Languages : en
Pages : 892

Get Book Here

Book Description
Papers presented in this publication cover special problems in the field of energetic materials, particularly detonation phenomena in solids and liquids. General subject areas include shock-to-detonation transition, time resolved chemistry, initiation modeling, deflagration-to-detonation transition, equation of state and equation of state and performance, composites and emulsions, and composites and emulsions/underwater explosives, reaction zone, detonation wave propagation, hot spots, detonation products, chemistry and compositions, and special initiation.

The Dynamics of Multi-dimensional Detonation

The Dynamics of Multi-dimensional Detonation PDF Author: Jin Yao
Publisher:
ISBN:
Category : Acoustic phenomena in nature
Languages : en
Pages : 306

Get Book Here

Book Description


The Detonation Phenomenon

The Detonation Phenomenon PDF Author: John H. S. Lee
Publisher: Cambridge University Press
ISBN: 1139473204
Category : Technology & Engineering
Languages : en
Pages : 389

Get Book Here

Book Description
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead of and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.

A Lecture on Detonation-shock Dynamics

A Lecture on Detonation-shock Dynamics PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We summarize recent investigations into the theory of multi-dimensional, time-dependent detonation. These advances have led to the development of a theory for describing the propagation of high-order detonation in condensed-phase explosives. The central approximation in the theory is that the detonation shock is weakly curved. Specifically, we assume that the radius of curvature of the detonation shock is large compared to a relevant reaction-zone thickness. Our main findings are: (1) the flow is quasi-steady and nearly one dimensional along the normal to the detonation shock; and (2) the small deviation of the normal detonation velocity from the Chapman-Jouguet (CJ) value is generally a function of curvature. The exact functional form of the correction depends on the equation of state (EOS) and the form of the energy-release law. 8 refs.

Calculation of Linear Detonation Instability

Calculation of Linear Detonation Instability PDF Author: H. I. Lee
Publisher:
ISBN:
Category : Detonation waves
Languages : en
Pages : 50

Get Book Here

Book Description


Dynamical Issues in Combustion Theory

Dynamical Issues in Combustion Theory PDF Author: Paul C. Fife
Publisher: Springer Science & Business Media
ISBN: 1461209471
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
This IMA Volume in Mathematics and its Applications DYNAMICAL ISSUES IN COMBUSTION THEORY is based on the proceedings of a workshop which was an integral part of the 1989-90 IMA program on "Dynamical Systems and their Applications." The aim of this workshop was to cross-fertilize research groups working in topics of current interest in combustion dynamics and mathematical methods applicable thereto. We thank Shui-Nee Chow, Martin Golubitsky, Richard McGehee, George R. Sell, Paul Fife, Amable Liiian and Foreman Williams for organizing the meeting. We especially thank Paul Fife, Amable Liiilin and Foreman Williams for editing the proceedings. We also take this opportunity to thank those agencies whose financial support made the workshop possible: the Army Research Office, the National Science Foundation and the Office of Naval Research. Avner Friedman Willard Miller, Jr. ix PREFACE The world ofcombustion phenomena is rich in problems intriguing to the math ematical scientist. They offer challenges on several fronts: (1) modeling, which involves the elucidation of the essential features of a given phenomenon through physical insight and knowledge of experimental results, (2) devising appropriate asymptotic and computational methods, and (3) developing sound mathematical theories. Papers in the present volume, which are based on talks given at the Workshop on Dynamical Issues in Combustion Theory in November, 1989, describe how all of these challenges have been met for particular examples within a number of common combustion scenarios: reactiveshocks, low Mach number premixed reactive flow, nonpremixed phenomena, and solid propellants.