The Shifted Hessenberg System Solve Computation

The Shifted Hessenberg System Solve Computation PDF Author: Greg Henry
Publisher:
ISBN:
Category : Algebras, Linear
Languages : en
Pages : 32

Get Book Here

Book Description

The Shifted Hessenberg System Solve Computation

The Shifted Hessenberg System Solve Computation PDF Author: Greg Henry
Publisher:
ISBN:
Category : Algebras, Linear
Languages : en
Pages : 32

Get Book Here

Book Description


Parallelism in Matrix Computations

Parallelism in Matrix Computations PDF Author: Efstratios Gallopoulos
Publisher: Springer
ISBN: 940177188X
Category : Technology & Engineering
Languages : en
Pages : 489

Get Book Here

Book Description
This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike. The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness.

Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing

Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing PDF Author: David H. Bailey
Publisher: SIAM
ISBN: 9780898713442
Category : Science
Languages : en
Pages : 900

Get Book Here

Book Description
Proceedings -- Parallel Computing.

Numerical Linear Algebra with Applications

Numerical Linear Algebra with Applications PDF Author: William Ford
Publisher: Academic Press
ISBN: 0123947847
Category : Mathematics
Languages : en
Pages : 629

Get Book Here

Book Description
Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica. - Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra - Detailed explanations and examples - A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra - Examples from engineering and science applications

Numerical Methods for General and Structured Eigenvalue Problems

Numerical Methods for General and Structured Eigenvalue Problems PDF Author: Daniel Kressner
Publisher: Springer Science & Business Media
ISBN: 3540285024
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.

Krylov Methods for Nonsymmetric Linear Systems

Krylov Methods for Nonsymmetric Linear Systems PDF Author: Gérard Meurant
Publisher: Springer Nature
ISBN: 3030552519
Category : Mathematics
Languages : en
Pages : 691

Get Book Here

Book Description
This book aims to give an encyclopedic overview of the state-of-the-art of Krylov subspace iterative methods for solving nonsymmetric systems of algebraic linear equations and to study their mathematical properties. Solving systems of algebraic linear equations is among the most frequent problems in scientific computing; it is used in many disciplines such as physics, engineering, chemistry, biology, and several others. Krylov methods have progressively emerged as the iterative methods with the highest efficiency while being very robust for solving large linear systems; they may be expected to remain so, independent of progress in modern computer-related fields such as parallel and high performance computing. The mathematical properties of the methods are described and analyzed along with their behavior in finite precision arithmetic. A number of numerical examples demonstrate the properties and the behavior of the described methods. Also considered are the methods’ implementations and coding as Matlab®-like functions. Methods which became popular recently are considered in the general framework of Q-OR (quasi-orthogonal )/Q-MR (quasi-minimum) residual methods. This book can be useful for both practitioners and for readers who are more interested in theory. Together with a review of the state-of-the-art, it presents a number of recent theoretical results of the authors, some of them unpublished, as well as a few original algorithms. Some of the derived formulas might be useful for the design of possible new methods or for future analysis. For the more applied user, the book gives an up-to-date overview of the majority of the available Krylov methods for nonsymmetric linear systems, including well-known convergence properties and, as we said above, template codes that can serve as the base for more individualized and elaborate implementations.

Improving Data Re-use in Eigenvalue-related Computations

Improving Data Re-use in Eigenvalue-related Computations PDF Author: Greg Henry
Publisher:
ISBN:
Category :
Languages : en
Pages : 346

Get Book Here

Book Description


Numerical Linear Algebra on High-Performance Computers

Numerical Linear Algebra on High-Performance Computers PDF Author: Jack J. Dongarra
Publisher: SIAM
ISBN: 0898714281
Category : Computers
Languages : en
Pages : 353

Get Book Here

Book Description
Provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications.

Computational Science - ICCS 2006

Computational Science - ICCS 2006 PDF Author: Vassil N. Alexandrov
Publisher: Springer
ISBN: 3540343865
Category : Computers
Languages : en
Pages : 1128

Get Book Here

Book Description
This is Volume IV of the four-volume set LNCS 3991-3994 constituting the refereed proceedings of the 6th International Conference on Computational Science, ICCS 2006. The 98 revised full papers and 29 revised poster papers of the main track presented together with 500 accepted workshop papers were carefully reviewed and selected for inclusion in the four volumes. The coverage spans the whole range of computational science.

Templates for the Solution of Algebraic Eigenvalue Problems

Templates for the Solution of Algebraic Eigenvalue Problems PDF Author: Zhaojun Bai
Publisher: SIAM
ISBN: 9780898719581
Category : Computers
Languages : en
Pages : 439

Get Book Here

Book Description
Large-scale problems of engineering and scientific computing often require solutions of eigenvalue and related problems. This book gives a unified overview of theory, algorithms, and practical software for eigenvalue problems. It organizes this large body of material to make it accessible for the first time to the many nonexpert users who need to choose the best state-of-the-art algorithms and software for their problems. Using an informal decision tree, just enough theory is introduced to identify the relevant mathematical structure that determines the best algorithm for each problem.