Author: Juliet Williams
Publisher: Univ of California Press
ISBN: 0520288963
Category : Education
Languages : en
Pages : 254
Book Description
Rethinking gender equality -- Single-sex education in historical perspective -- "We've got to try something" : the male academy initiatives -- What about the girls? -- Single-sex public education and the popular neuroscience of sex difference -- Different but equal? : reflections on the future of gender discourse
The Separation Solution?
Author: Juliet Williams
Publisher: Univ of California Press
ISBN: 0520288963
Category : Education
Languages : en
Pages : 254
Book Description
Rethinking gender equality -- Single-sex education in historical perspective -- "We've got to try something" : the male academy initiatives -- What about the girls? -- Single-sex public education and the popular neuroscience of sex difference -- Different but equal? : reflections on the future of gender discourse
Publisher: Univ of California Press
ISBN: 0520288963
Category : Education
Languages : en
Pages : 254
Book Description
Rethinking gender equality -- Single-sex education in historical perspective -- "We've got to try something" : the male academy initiatives -- What about the girls? -- Single-sex public education and the popular neuroscience of sex difference -- Different but equal? : reflections on the future of gender discourse
The Separation Solution?
Author: Juliet Williams
Publisher: Univ of California Press
ISBN: 0520288955
Category : Education
Languages : en
Pages : 254
Book Description
Since the 1990s, there has been a resurgence of interest in single-sex education across the United States, and many public schools have created all-boys and all-girls classes for students in grades K through 12. The Separation Solution? provides an in-depth analysis of controversies sparked by recent efforts to separate boys and girls at school. Reviewing evidence from research studies, court cases, and hundreds of news media reports on local single-sex initiatives, Juliet Williams offers fresh insight into popular conceptions of the nature and significance of gender differences in education and beyond.
Publisher: Univ of California Press
ISBN: 0520288955
Category : Education
Languages : en
Pages : 254
Book Description
Since the 1990s, there has been a resurgence of interest in single-sex education across the United States, and many public schools have created all-boys and all-girls classes for students in grades K through 12. The Separation Solution? provides an in-depth analysis of controversies sparked by recent efforts to separate boys and girls at school. Reviewing evidence from research studies, court cases, and hundreds of news media reports on local single-sex initiatives, Juliet Williams offers fresh insight into popular conceptions of the nature and significance of gender differences in education and beyond.
The Separation and Removal of Inorganic Ions and Organics from Aqueous Solutions
Author: Shenxu Bao
Publisher: Frontiers Media SA
ISBN: 2889717364
Category : Science
Languages : en
Pages : 99
Book Description
Publisher: Frontiers Media SA
ISBN: 2889717364
Category : Science
Languages : en
Pages : 99
Book Description
A Method for the Separation of the Seven Permitted Coal-tar Colors when Occurring in Mixtures
Author: Thomas Malcolm Price
Publisher:
ISBN:
Category : Coal-tar colors
Languages : en
Pages : 8
Book Description
Publisher:
ISBN:
Category : Coal-tar colors
Languages : en
Pages : 8
Book Description
Boron Separation Processes
Author: Nalan Kabay
Publisher: Elsevier
ISBN: 0444634657
Category : Technology & Engineering
Languages : en
Pages : 405
Book Description
The impending crisis posed by water stress and poor sanitation represents one of greatest human challenges for the 21st century, and membrane technology has emerged as a serious contender to confront the crisis. Yet, whilst there are countless texts on wastewater treatment and on membrane technologies, none address the boron problem and separation processes for boron elimination. Boron Separation Processes fills this gap and provides a unique and single source that highlights the growing and competitive importance of these processes. For the first time, the reader is able to see in one reference work the state-of-the-art research in this rapidly growing field. The book focuses on four main areas: - Effect of boron on humans and plants - Separation of boron by ion exchange and adsorption processes - Separation of boron by membrane processes - Simulation and optimization studies for boron separation - Provides in one source a state-of-the-art overview of this compelling area - Reviews the environmental impact of boron before introducing emerging boron separation processes - Includes simulation and optimization studies for boron separation processes - Describes boron separation processes applicable to specific sources, such as seawater, geothermal water and wastewater
Publisher: Elsevier
ISBN: 0444634657
Category : Technology & Engineering
Languages : en
Pages : 405
Book Description
The impending crisis posed by water stress and poor sanitation represents one of greatest human challenges for the 21st century, and membrane technology has emerged as a serious contender to confront the crisis. Yet, whilst there are countless texts on wastewater treatment and on membrane technologies, none address the boron problem and separation processes for boron elimination. Boron Separation Processes fills this gap and provides a unique and single source that highlights the growing and competitive importance of these processes. For the first time, the reader is able to see in one reference work the state-of-the-art research in this rapidly growing field. The book focuses on four main areas: - Effect of boron on humans and plants - Separation of boron by ion exchange and adsorption processes - Separation of boron by membrane processes - Simulation and optimization studies for boron separation - Provides in one source a state-of-the-art overview of this compelling area - Reviews the environmental impact of boron before introducing emerging boron separation processes - Includes simulation and optimization studies for boron separation processes - Describes boron separation processes applicable to specific sources, such as seawater, geothermal water and wastewater
The No-Cry Separation Anxiety Solution: Gentle Ways to Make Good-bye Easy from Six Months to Six Years
Author: Elizabeth Pantley
Publisher: McGraw Hill Professional
ISBN: 0071747079
Category : Business & Economics
Languages : en
Pages : 179
Book Description
A tear-free approach to child separation blues-from the bestselling 'No Cry' author a generation of parents have come to trust Almost every child suffers some sort of anxiety during their first six years of life. Babies cry when grandparents hold them, toddlers cling to mommy's leg, children weep when their parent leaves them at daycare, at school, or to go to work. This can cause frustration and stress in an already too-busy day and can break a parent's heart. Trusted parenting author Elizabeth Pantley brings you another winning no-cry formula that helps you solve these common separation issues. Pantley helps you identify the source of anxiety and offers simple but proven solutions. This successful method gives anxious children something to remind them their parents aren't too far away-instantly providing them with the comfort and reassurance they need.
Publisher: McGraw Hill Professional
ISBN: 0071747079
Category : Business & Economics
Languages : en
Pages : 179
Book Description
A tear-free approach to child separation blues-from the bestselling 'No Cry' author a generation of parents have come to trust Almost every child suffers some sort of anxiety during their first six years of life. Babies cry when grandparents hold them, toddlers cling to mommy's leg, children weep when their parent leaves them at daycare, at school, or to go to work. This can cause frustration and stress in an already too-busy day and can break a parent's heart. Trusted parenting author Elizabeth Pantley brings you another winning no-cry formula that helps you solve these common separation issues. Pantley helps you identify the source of anxiety and offers simple but proven solutions. This successful method gives anxious children something to remind them their parents aren't too far away-instantly providing them with the comfort and reassurance they need.
Source Separation and Decentralization for Wastewater Management
Author: Tove A. Larsen
Publisher: IWA Publishing
ISBN: 1843393484
Category : Science
Languages : en
Pages : 502
Book Description
Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group
Publisher: IWA Publishing
ISBN: 1843393484
Category : Science
Languages : en
Pages : 502
Book Description
Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group
Modern Methods for the Separation of Rarer Metal Ions
Author: Johann Korkisch
Publisher: Elsevier
ISBN: 1483186318
Category : Science
Languages : en
Pages : 633
Book Description
Modern Methods for the Separation of Rarer Metal Ions describes several separation methods of more than 50 elements. This book is divided into 19 chapters that include separation methods involving the actinide elements, rare earths, and many rarer elements of the main and transition groups of the periodic table. The introductory chapter discusses the principles of the separation techniques presented in this book. The remaining chapters explore the application of specific separation methods, such as ion exchange, chromatography, liquid-liquid extraction, distillation, and coprecipitation. The approach of each chapter is a presentation of separation principle of an element first followed by numerous examples of applications to the solution of practical problems encountered in separation chemistry. Chapters 2 and 3 examine the separations involving the actinides and rare earth elements using ion exchange and liquid-liquid extraction These are followed by chapters dealing with separations of other rarer elements, which have been arranged according to their position in the periodic table. These elements are: Li, Rb, Cs, Fr, Be, Ra, Ga, In, Tl, Ge, Ag, Au, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Tc, Re and the platinum metals. This book will be of great use to analytical chemists.
Publisher: Elsevier
ISBN: 1483186318
Category : Science
Languages : en
Pages : 633
Book Description
Modern Methods for the Separation of Rarer Metal Ions describes several separation methods of more than 50 elements. This book is divided into 19 chapters that include separation methods involving the actinide elements, rare earths, and many rarer elements of the main and transition groups of the periodic table. The introductory chapter discusses the principles of the separation techniques presented in this book. The remaining chapters explore the application of specific separation methods, such as ion exchange, chromatography, liquid-liquid extraction, distillation, and coprecipitation. The approach of each chapter is a presentation of separation principle of an element first followed by numerous examples of applications to the solution of practical problems encountered in separation chemistry. Chapters 2 and 3 examine the separations involving the actinides and rare earth elements using ion exchange and liquid-liquid extraction These are followed by chapters dealing with separations of other rarer elements, which have been arranged according to their position in the periodic table. These elements are: Li, Rb, Cs, Fr, Be, Ra, Ga, In, Tl, Ge, Ag, Au, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Tc, Re and the platinum metals. This book will be of great use to analytical chemists.
Integration Or Separation?
Author: Roy L. Brooks
Publisher: Harvard University Press
ISBN: 0674456459
Category : Law
Languages : en
Pages : 361
Book Description
Brooks says with frank clarity what few will admit - integration has never worked and possibly never will. This book presents his strategy for a middle way between the increasingly unworkable extremes of integration and separation.
Publisher: Harvard University Press
ISBN: 0674456459
Category : Law
Languages : en
Pages : 361
Book Description
Brooks says with frank clarity what few will admit - integration has never worked and possibly never will. This book presents his strategy for a middle way between the increasingly unworkable extremes of integration and separation.
The Separation of Selenium and Tellurium, and
Author: Chung Hsi Kao
Publisher:
ISBN:
Category : Chlorides
Languages : en
Pages : 506
Book Description
Publisher:
ISBN:
Category : Chlorides
Languages : en
Pages : 506
Book Description