Author: William Ralph Bennett Jr.
Publisher: Springer
ISBN: 3319927965
Category : Science
Languages : en
Pages : 440
Book Description
This textbook is a product of William Bennett’s work in developing and teaching a course on the physics of music at Yale University to a diverse audience of musicians and science students in the same class. The book is a culmination of over a decade of teaching the course and weaves together historical descriptions of the physical phenomena with the author’s clear interpretations of the most important aspects of the science of music and musical instruments. Many of the historical examples are not found in any other textbook available on the market. As the co-inventor of the Helium-Neon laser, Prof. Bennett’s knowledge of physics was world-class. As a professor at one of the most prestigious liberal-arts universities in the world, his appreciation for culture and humanities shines through. The book covers the basics of oscillations, waves and the analysis techniques necessary for understanding how musical instruments work. All types of stringed instruments, pipe organs, and the human voice are covered in this volume. A second volume covers the remaining families of musical instruments as well as selected other topics. Readers without a background in acoustics will enjoy learning the physics of the Science of Musical Sound from a preeminent scientist of the 20th century. Those well versed in acoustics will discover wonderful illustrations and photographs depicting familiar concepts in new and enlightening ways.
The Science of Musical Sound
Author: William Ralph Bennett Jr.
Publisher: Springer
ISBN: 3319927965
Category : Science
Languages : en
Pages : 440
Book Description
This textbook is a product of William Bennett’s work in developing and teaching a course on the physics of music at Yale University to a diverse audience of musicians and science students in the same class. The book is a culmination of over a decade of teaching the course and weaves together historical descriptions of the physical phenomena with the author’s clear interpretations of the most important aspects of the science of music and musical instruments. Many of the historical examples are not found in any other textbook available on the market. As the co-inventor of the Helium-Neon laser, Prof. Bennett’s knowledge of physics was world-class. As a professor at one of the most prestigious liberal-arts universities in the world, his appreciation for culture and humanities shines through. The book covers the basics of oscillations, waves and the analysis techniques necessary for understanding how musical instruments work. All types of stringed instruments, pipe organs, and the human voice are covered in this volume. A second volume covers the remaining families of musical instruments as well as selected other topics. Readers without a background in acoustics will enjoy learning the physics of the Science of Musical Sound from a preeminent scientist of the 20th century. Those well versed in acoustics will discover wonderful illustrations and photographs depicting familiar concepts in new and enlightening ways.
Publisher: Springer
ISBN: 3319927965
Category : Science
Languages : en
Pages : 440
Book Description
This textbook is a product of William Bennett’s work in developing and teaching a course on the physics of music at Yale University to a diverse audience of musicians and science students in the same class. The book is a culmination of over a decade of teaching the course and weaves together historical descriptions of the physical phenomena with the author’s clear interpretations of the most important aspects of the science of music and musical instruments. Many of the historical examples are not found in any other textbook available on the market. As the co-inventor of the Helium-Neon laser, Prof. Bennett’s knowledge of physics was world-class. As a professor at one of the most prestigious liberal-arts universities in the world, his appreciation for culture and humanities shines through. The book covers the basics of oscillations, waves and the analysis techniques necessary for understanding how musical instruments work. All types of stringed instruments, pipe organs, and the human voice are covered in this volume. A second volume covers the remaining families of musical instruments as well as selected other topics. Readers without a background in acoustics will enjoy learning the physics of the Science of Musical Sound from a preeminent scientist of the 20th century. Those well versed in acoustics will discover wonderful illustrations and photographs depicting familiar concepts in new and enlightening ways.
Physics and Music
Author: Harvey E. White
Publisher: Courier Corporation
ISBN: 0486794008
Category : Science
Languages : en
Pages : 452
Book Description
Comprehensive and accessible, this foundational text surveys general principles of sound, musical scales, characteristics of instruments, mechanical and electronic recording devices, and many other topics. More than 300 illustrations plus questions, problems, and projects.
Publisher: Courier Corporation
ISBN: 0486794008
Category : Science
Languages : en
Pages : 452
Book Description
Comprehensive and accessible, this foundational text surveys general principles of sound, musical scales, characteristics of instruments, mechanical and electronic recording devices, and many other topics. More than 300 illustrations plus questions, problems, and projects.
The Science of Musical Sound
Author: John R. Pierce
Publisher:
ISBN:
Category : Music
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Music
Languages : en
Pages :
Book Description
Analysis, Synthesis, and Perception of Musical Sounds
Author: James Beauchamp
Publisher: Springer Science & Business Media
ISBN: 038732576X
Category : Science
Languages : en
Pages : 348
Book Description
This book contains a complete and accurate mathematical treatment of the sounds of music with an emphasis on musical timbre. The book spans the range from tutorial introduction to advanced research and application to speculative assessment of its various techniques. All the contributors use a generalized additive sine wave model for describing musical timbre which gives a conceptual unity, but is of sufficient utility to be adapted to many different tasks.
Publisher: Springer Science & Business Media
ISBN: 038732576X
Category : Science
Languages : en
Pages : 348
Book Description
This book contains a complete and accurate mathematical treatment of the sounds of music with an emphasis on musical timbre. The book spans the range from tutorial introduction to advanced research and application to speculative assessment of its various techniques. All the contributors use a generalized additive sine wave model for describing musical timbre which gives a conceptual unity, but is of sufficient utility to be adapted to many different tasks.
The Sound Book: The Science of the Sonic Wonders of the World
Author: Trevor Cox
Publisher: W. W. Norton & Company
ISBN: 039324282X
Category : Science
Languages : en
Pages : 391
Book Description
"A lucid and passionate case for a more mindful way of listening to and engaging with musical, natural, and manmade sounds." —New York Times In this tour of the world’s most unexpected sounds, Trevor Cox—the “David Attenborough of the acoustic realm” (Observer)—discovers the world’s longest echo in a hidden oil cavern in Scotland, unlocks the secret of singing sand dunes in California, and alerts us to the aural gems that exist everywhere in between. Using the world’s most amazing acoustic phenomena to reveal how sound works in everyday life, The Sound Book inspires us to become better listeners in a world dominated by the visual and to open our ears to the glorious cacophony all around us.
Publisher: W. W. Norton & Company
ISBN: 039324282X
Category : Science
Languages : en
Pages : 391
Book Description
"A lucid and passionate case for a more mindful way of listening to and engaging with musical, natural, and manmade sounds." —New York Times In this tour of the world’s most unexpected sounds, Trevor Cox—the “David Attenborough of the acoustic realm” (Observer)—discovers the world’s longest echo in a hidden oil cavern in Scotland, unlocks the secret of singing sand dunes in California, and alerts us to the aural gems that exist everywhere in between. Using the world’s most amazing acoustic phenomena to reveal how sound works in everyday life, The Sound Book inspires us to become better listeners in a world dominated by the visual and to open our ears to the glorious cacophony all around us.
The Fundamentals of Sound Science
Author: Elena Borovitskaya
Publisher: Cognella Academic Publishing
ISBN: 9781634874359
Category : Science
Languages : en
Pages : 250
Book Description
"The Fundamentals of Sound Science teaches the principles of the physics of sound, as well as basic principles of physics, by linking them to music and musical instruments. The book begins by asking students to question the meaning of sound itself. What is sound? How far and how fast does it travel? By asking students to think about sound in this way, the material is able to connect our daily experience of sound to principles of physics such as distance, velocity, scalars, and vectors. Through the next six chapters students learn about harmonic motion, waves, the sources and physical properties of sound, and measurements of loudness. The second half of the book uses music as the vehicle for a deeper exploration of sound. Students study some basic musicianship, including articulation, intervals, and harmonic series. These concepts become the springboard for an examination of the Fourier Analysis of Simplest Sound Spectra, which encompasses steady tones, periodic waves of arbitrary form, square, triangular, and sawtooth waves, and modulated tones. Different families of instruments are discussed in depth: percussion, strings, flutes and recorders, woodwinds, and finally the human voice. The book concludes with a chapter on room acoustics, which covers the precedence effect and reverberations. Each chapter is filled with detailed explanations, and numerous examples are used to enhance student understanding. Study questions are included to encourage critical thinking, and prepare students for tests. Chapter summaries aid retention by reviewing terms and relations. By finding the common ground between physics and music, The Fundamentals of Sound Science strengthens understanding of both, revealing that many principles of the physical world are a part of our common, taken for granted, daily experience. All we have to do is listen. The Fundamentals of Sound Science can be used for introductory courses in physics, including those at the high school level. The accessibility of the material makes the book appropriate for non-majors at the university level, and students can achieve mastery of the content without a background in mathematics, making the book ideal for general education courses. Elena Borovitskaya earned her Ph.D. in physics and mathematics at the Institute of Applied Physics, Russian Academy of Science in Nizhni Novgorod, Russia. Her area of expertise is the physics of low-dimensional systems such as quantum wells, quantum wires, and quantum dots. Dr. Borovitskaya also studied at a music school in Nizhni Novgorod. Her joint areas of interest and expertise have enabled her to connect the language of physics and the language of music. Currently she is a faculty member at Temple University in Philadelphia, where she enjoys teaching a variety of courses, musical acoustics being her favorite. "
Publisher: Cognella Academic Publishing
ISBN: 9781634874359
Category : Science
Languages : en
Pages : 250
Book Description
"The Fundamentals of Sound Science teaches the principles of the physics of sound, as well as basic principles of physics, by linking them to music and musical instruments. The book begins by asking students to question the meaning of sound itself. What is sound? How far and how fast does it travel? By asking students to think about sound in this way, the material is able to connect our daily experience of sound to principles of physics such as distance, velocity, scalars, and vectors. Through the next six chapters students learn about harmonic motion, waves, the sources and physical properties of sound, and measurements of loudness. The second half of the book uses music as the vehicle for a deeper exploration of sound. Students study some basic musicianship, including articulation, intervals, and harmonic series. These concepts become the springboard for an examination of the Fourier Analysis of Simplest Sound Spectra, which encompasses steady tones, periodic waves of arbitrary form, square, triangular, and sawtooth waves, and modulated tones. Different families of instruments are discussed in depth: percussion, strings, flutes and recorders, woodwinds, and finally the human voice. The book concludes with a chapter on room acoustics, which covers the precedence effect and reverberations. Each chapter is filled with detailed explanations, and numerous examples are used to enhance student understanding. Study questions are included to encourage critical thinking, and prepare students for tests. Chapter summaries aid retention by reviewing terms and relations. By finding the common ground between physics and music, The Fundamentals of Sound Science strengthens understanding of both, revealing that many principles of the physical world are a part of our common, taken for granted, daily experience. All we have to do is listen. The Fundamentals of Sound Science can be used for introductory courses in physics, including those at the high school level. The accessibility of the material makes the book appropriate for non-majors at the university level, and students can achieve mastery of the content without a background in mathematics, making the book ideal for general education courses. Elena Borovitskaya earned her Ph.D. in physics and mathematics at the Institute of Applied Physics, Russian Academy of Science in Nizhni Novgorod, Russia. Her area of expertise is the physics of low-dimensional systems such as quantum wells, quantum wires, and quantum dots. Dr. Borovitskaya also studied at a music school in Nizhni Novgorod. Her joint areas of interest and expertise have enabled her to connect the language of physics and the language of music. Currently she is a faculty member at Temple University in Philadelphia, where she enjoys teaching a variety of courses, musical acoustics being her favorite. "
Physics Sound Waves Music Instruments Hb
Author: PHOTINOS
Publisher: IOP Publishing Limited
ISBN: 9780750335379
Category : Science
Languages : en
Pages : 200
Book Description
The Physics of Sound Waves: Music, Instruments, and Sound Equipment, Second Edition describes the properties of sound waves as they relate to the production of sound by musical instruments, the perception and interpretation of sound, fast Fourier transform analysis, recording and reproduction of musical sounds, and the quality of sound in both indoor and outdoor environments. Graphics and animations are used to explain sound production in strings, percussion and wind instruments, and this knowledge is applied to describe selected instruments. Each chapter has topics for further discussion and concludes with questions and problems. Solutions for all questions and problems as well as a mathematical description of waves are provided in the appendix. Key Features Provides the basic understanding of musical sounds and the nature of sound waves. Includes musical scales with examples from around the world. Discusses digital sounds and its relevance. The book provides many worked examples, and end of chapter problems with solutions in the appendix. Applicable equations are summarized at the end of each chapter.
Publisher: IOP Publishing Limited
ISBN: 9780750335379
Category : Science
Languages : en
Pages : 200
Book Description
The Physics of Sound Waves: Music, Instruments, and Sound Equipment, Second Edition describes the properties of sound waves as they relate to the production of sound by musical instruments, the perception and interpretation of sound, fast Fourier transform analysis, recording and reproduction of musical sounds, and the quality of sound in both indoor and outdoor environments. Graphics and animations are used to explain sound production in strings, percussion and wind instruments, and this knowledge is applied to describe selected instruments. Each chapter has topics for further discussion and concludes with questions and problems. Solutions for all questions and problems as well as a mathematical description of waves are provided in the appendix. Key Features Provides the basic understanding of musical sounds and the nature of sound waves. Includes musical scales with examples from around the world. Discusses digital sounds and its relevance. The book provides many worked examples, and end of chapter problems with solutions in the appendix. Applicable equations are summarized at the end of each chapter.
Good Vibrations
Author: Barry Parker
Publisher: JHU Press
ISBN: 0801897076
Category : Science
Languages : en
Pages : 286
Book Description
Why does a harpsichord sound different from a piano? For that matter, why does middle C on a piano differ from middle C on a tuning fork, a trombone, or a flute? Good Vibrations explains in clear, friendly language the out-of-sight physics responsible not only for these differences but also for the whole range of noises we call music. The physical properties and history of sound are fascinating to study. Barry Parker's tour of the physics of music details the science of how instruments, the acoustics of rooms, electronics, and humans create and alter the varied sounds we hear. Using physics as a base, Parker discusses the history of music, how sounds are made and perceived, and the various effects of acting on sounds. In the process, he demonstrates what acoustics can teach us about quantum theory and explains the relationship between harmonics and the theory of waves. Peppered throughout with anecdotes and examples illustrating key concepts, this invitingly written book provides a firm grounding in the actual and theoretical physics of music.
Publisher: JHU Press
ISBN: 0801897076
Category : Science
Languages : en
Pages : 286
Book Description
Why does a harpsichord sound different from a piano? For that matter, why does middle C on a piano differ from middle C on a tuning fork, a trombone, or a flute? Good Vibrations explains in clear, friendly language the out-of-sight physics responsible not only for these differences but also for the whole range of noises we call music. The physical properties and history of sound are fascinating to study. Barry Parker's tour of the physics of music details the science of how instruments, the acoustics of rooms, electronics, and humans create and alter the varied sounds we hear. Using physics as a base, Parker discusses the history of music, how sounds are made and perceived, and the various effects of acting on sounds. In the process, he demonstrates what acoustics can teach us about quantum theory and explains the relationship between harmonics and the theory of waves. Peppered throughout with anecdotes and examples illustrating key concepts, this invitingly written book provides a firm grounding in the actual and theoretical physics of music.
Sound Authorities
Author: Edward J. Gillin
Publisher: University of Chicago Press
ISBN: 022678777X
Category : History
Languages : en
Pages : 319
Book Description
"In Sound Authorities, Edward J. Gillin shows how experiences of music and sound played a crucial role in nineteenth-century scientific inquiry in Britain. Where other studies have focused on vision in Victorian England, Gillin focuses on hearing and aurality, making the claim that the development of the natural sciences in Britain in this era cannot be understood without attending to how the study of sound and music contributed to the fashioning of new scientific knowledge. Gillin's book is about how scientific practitioners attempted to fashion themselves as authorities on sonorous phenomena, coming into conflict with traditional musical elites as well as religious bodies. Gillin pays attention to not only musical sound but also the phenomenon of sound in non-musical contexts, specifically, the cacophony of British industrialization, and he analyzes the debates between figures from disparate fields over the proper account of musical experience. Gillin's story begins with the place of acoustics in early nineteenth-century London, examining scientific exhibitions, lectures, and spectacles, as well as workshops, laboratories, and showrooms. He goes on to explore how mathematicians mobilized sound in their understanding of natural laws and their vision of a harmonious order, as well as the convergence of aesthetic and scientific approaches to pitch standardization. In closing, Gillin delves into the era's religious and metaphysical debates over the place of music (and humanity) in nature, the relationship between music and the divine, and the tension between religious/spiritualist understandings of sound and scientific/materialist ones"--
Publisher: University of Chicago Press
ISBN: 022678777X
Category : History
Languages : en
Pages : 319
Book Description
"In Sound Authorities, Edward J. Gillin shows how experiences of music and sound played a crucial role in nineteenth-century scientific inquiry in Britain. Where other studies have focused on vision in Victorian England, Gillin focuses on hearing and aurality, making the claim that the development of the natural sciences in Britain in this era cannot be understood without attending to how the study of sound and music contributed to the fashioning of new scientific knowledge. Gillin's book is about how scientific practitioners attempted to fashion themselves as authorities on sonorous phenomena, coming into conflict with traditional musical elites as well as religious bodies. Gillin pays attention to not only musical sound but also the phenomenon of sound in non-musical contexts, specifically, the cacophony of British industrialization, and he analyzes the debates between figures from disparate fields over the proper account of musical experience. Gillin's story begins with the place of acoustics in early nineteenth-century London, examining scientific exhibitions, lectures, and spectacles, as well as workshops, laboratories, and showrooms. He goes on to explore how mathematicians mobilized sound in their understanding of natural laws and their vision of a harmonious order, as well as the convergence of aesthetic and scientific approaches to pitch standardization. In closing, Gillin delves into the era's religious and metaphysical debates over the place of music (and humanity) in nature, the relationship between music and the divine, and the tension between religious/spiritualist understandings of sound and scientific/materialist ones"--
The Science of Sci-Fi Music
Author: Andrew May
Publisher: Springer Nature
ISBN: 3030478335
Category : Science
Languages : en
Pages : 156
Book Description
The 20th century saw radical changes in the way serious music is composed and produced, including the advent of electronic instruments and novel compositional methods such as serialism and stochastic music. Unlike previous artistic revolutions, this one took its cues from the world of science. Creating electronic sounds, in the early days, required a well-equipped laboratory and an understanding of acoustic theory. Composition became increasingly “algorithmic”, with many composers embracing the mathematics of set theory. The result was some of the most intellectually challenging music ever written – yet also some of the best known, thanks to its rapid assimilation into sci-fi movies and TV shows, from the electronic scores of Forbidden Planet and Dr Who to the other-worldly sounds of 2001: A Space Odyssey. This book takes a close look at the science behind "science fiction" music, as well as exploring the way sci-fi imagery found its way into the work of musicians like Sun Ra and David Bowie, and how music influenced the science fiction writings of Philip K. Dick and others.
Publisher: Springer Nature
ISBN: 3030478335
Category : Science
Languages : en
Pages : 156
Book Description
The 20th century saw radical changes in the way serious music is composed and produced, including the advent of electronic instruments and novel compositional methods such as serialism and stochastic music. Unlike previous artistic revolutions, this one took its cues from the world of science. Creating electronic sounds, in the early days, required a well-equipped laboratory and an understanding of acoustic theory. Composition became increasingly “algorithmic”, with many composers embracing the mathematics of set theory. The result was some of the most intellectually challenging music ever written – yet also some of the best known, thanks to its rapid assimilation into sci-fi movies and TV shows, from the electronic scores of Forbidden Planet and Dr Who to the other-worldly sounds of 2001: A Space Odyssey. This book takes a close look at the science behind "science fiction" music, as well as exploring the way sci-fi imagery found its way into the work of musicians like Sun Ra and David Bowie, and how music influenced the science fiction writings of Philip K. Dick and others.