The role of physical and biological soil crusts on the water balance in semiarid ecosystems

The role of physical and biological soil crusts on the water balance in semiarid ecosystems PDF Author: Sonia Chamizo de la Piedra
Publisher: Universidad Almería
ISBN: 8416027358
Category :
Languages : en
Pages : 235

Get Book Here

Book Description
In arid and semiarid areas, the interplant spaces are usually covered by physical and biological soil crusts. These crusts, though representing an almost negligible portion of the soil profile, have a number of crucial roles. Soil crusts form the boundary between soil and atmosphere and therefore control gas, water and nutrient exchange into and through soils. Concretely, in the last decade, the study of biological soil crusts (BSCs) (complex communities of cyanobacteria, algae, fungi, lichens, mosses and other microorganisms in intimate association with soil particles) has drawn the attention of a growing number of researchers due to the key role they play in numerous processes in the ecosystems where they appear. Unlike physical crusts, BSCs protect soils against erosion by water and wind, and increase soil fertility by fixing atmospheric C and N, synthesising polysaccharides and reducing nutrient losses by runoff and erosion. Through their influence on numerous properties that affect how water moves though soils such as roughness, porosity, hydrophobicity, cracking, and albedo, BSCs play a key role in water processes, such as infiltration and runoff, evaporation and soil moisture. It is widely known the role of physical crusts in decreasing soil porosity and hydraulic conductivity, thus decreasing infiltration. However, there is controversy regarding the role of BSCs in infiltration and runoff processes. Some studies indicate that BSCs increase infiltration, and consequently, decrease runoff, whereas others have reported that they decrease infiltration and increase runoff or that they have no effect on either of them. In addition, the influence of BSCs on other soil water balance components such as evaporation and soil moisture has hardly been studied and the scarce existing studies also show contradicting results. With the aim of enlightening the role that BSCs play in the water balance in semiarid areas, in this thesis it has been analysed the influence of different soil crust types, physical crusts and various developmental stages of BSCs, on key soil water balance components such as infiltration-runoff, evaporation and soil moisture, at plot scale. Furthermore, to better understand how these crusts affect hydrological processes, the influence of the type of crust and developmental stage of the crust on different properties that affect water movement and retention in soils has been analysed. Last, spectral characteristics of the different crust types, as well as of vegetation, have been examined with the aim of developing a spectral classification system for differentiation of these common ground covers in semiarid areas that allows their mapping and the modelling of the effects of the crusted areas on hydrological and erosion processes on larger spatial scales (hillslope and catchment). To conduct this research, two areas where BSCs are widespread and that represent key spatial distributions of BSCs in semiarid ecosystems were chosen in the province of Almeria (SE Spain): El Cautivo (in the Tabernas Desert), a badlands catchment with silty-loam textured soils, and Las Amoladeras (in the Cabo de Gata-Níjar Natural Park), a flat area with sandy-loam textured soils. Our results show that BSCs increase aggregate stability, water retention capacity, and organic carbon and total nitrogen content compared to physical crusts and, within BSCs, these properties increase in the crust and the underlying soil as the crust is more developed (in terms of greater biomass and later-successional species composition). The increase in soil properties with the presence of BSCs is especially noticeable in the top layer of soil (0.01 m) and decreases with depth (0.01-0.05 m) (Chapter I). Through their effect increasing surface roughness and physico-chemical soil properties, BSCs increase infiltration and decrease runoff compared to physical crusts. In general, infiltration increases with greater BSC development (Chapter II). However, there are exceptions to this general pattern that are conditioned by other factors such as the spatial scale under study or the type of rainfall. At small plot sizes (0.25 m2) and after 1h-high intensity simulated rainfall (50 mmh-1), we found that well-developed BSCs such as lichens, generate higher runoff rates than less developed BSCs as cyanobacteria, and similar runoff rates to physical crusts (Chapter II). Thus, at microplot scales and under extreme events, the effect of well-developed BSCs in enhancing infiltration due to their greater roughness can be overcome by their ability to clog soil pores when wet, thus increasing runoff. However, when the influence of BSCs on infiltration and runoff is analysed under natural rain events and at larger spatial scales (1-10 m2), we found that, in low intensity rainfalls, runoff decreases with the cover of well-developed BSCs (lichens) and this effect is higher as the plot size increases (Chapter III). Such decrease in runoff with the presence of well-developed BSCs is due to the microtopography that these crusts confer to soils. Under high intensity rainfalls, BSC cover has no significant effect on runoff yield and the main factor acting to determine runoff generation is rainfall intensity (Chapter III). The removal of the crust initially causes infiltration to increase. But this effect diminishes over time as raindrop impact reseals the surface and a new physical crust is formed that increases runoff (Chapter II). Moreover, crust disturbance by trampling but, especially by removal, causes a dramatic increase in erosion (Chapter II). Erosion also depends on the type of BSC. Well-developed crusts as lichens and mosses generate lower erosion rates than less developed crusts as cyanobacteria. Regarding the influence of BSCs on soil evaporation, under saturation conditions and warm ambient temperatures, soil water loss is quick in all types of surfaces and no significant differences are found in soils with or without BSCs (Chapter V). However, during long cold wet periods, soil water loss is faster in soils devoid of BSCs than in those covered by them. Thus, BSC-crusted soils maintain more soil moisture at the upper soil layer (0.03 m) than adjacent soils where the BSC has been removed, during wet periods. At deeper soil (0.10 m), soil moisture is similar in both BSC-crusted and uncrusted soils. The removal of the BSC causes a higher decrease in soil moisture in fine-textured soils (Cautivo), where the presence of BSCs has a stronger influence on increasing porosity and infiltration, than in coarse-textured soils (Las Amoladeras). During dry soil periods, soil moisture is similar in soils with or without BSCs (Chapter V). Last, a quantitative analysis of spectral characteristics of vegetation, physical crusts and BSC developmental stages has demonstrated the possibility of classifying these common ground covers in semiarid areas based on distinctive spectral features (Chapter VI). The application of the classification system developed to multi and hiperspectral provides the possibility for future mapping of spatial distribution and temporal dynamics of BSCs, which is crucial to incorporating the effects of crusted surfaces in current hydrological and erosion models. Summarizing, compared to physical crusts, the presence of BSCs increase physico-chemical properties of underlying soils, especially in the first centimeters of soil, and this enhancement is greater as the BSC is more developed. Due to this increase in soil properties and the higher roughness that BSCs provide to soils, BSCs increase water input by increasing infiltration and soil moisture, and soil moisture, and reduce water output by reducing soil evaporation. Hence, compared to physical crusts, the presence of BSCs and, especially the presence of well-developed BSCs, have an overall positive effect on the local water balance in semiarid ecosystems, in addition to having a major role in protecting soils from erosion.

The role of physical and biological soil crusts on the water balance in semiarid ecosystems

The role of physical and biological soil crusts on the water balance in semiarid ecosystems PDF Author: Sonia Chamizo de la Piedra
Publisher: Universidad Almería
ISBN: 8416027358
Category :
Languages : en
Pages : 235

Get Book Here

Book Description
In arid and semiarid areas, the interplant spaces are usually covered by physical and biological soil crusts. These crusts, though representing an almost negligible portion of the soil profile, have a number of crucial roles. Soil crusts form the boundary between soil and atmosphere and therefore control gas, water and nutrient exchange into and through soils. Concretely, in the last decade, the study of biological soil crusts (BSCs) (complex communities of cyanobacteria, algae, fungi, lichens, mosses and other microorganisms in intimate association with soil particles) has drawn the attention of a growing number of researchers due to the key role they play in numerous processes in the ecosystems where they appear. Unlike physical crusts, BSCs protect soils against erosion by water and wind, and increase soil fertility by fixing atmospheric C and N, synthesising polysaccharides and reducing nutrient losses by runoff and erosion. Through their influence on numerous properties that affect how water moves though soils such as roughness, porosity, hydrophobicity, cracking, and albedo, BSCs play a key role in water processes, such as infiltration and runoff, evaporation and soil moisture. It is widely known the role of physical crusts in decreasing soil porosity and hydraulic conductivity, thus decreasing infiltration. However, there is controversy regarding the role of BSCs in infiltration and runoff processes. Some studies indicate that BSCs increase infiltration, and consequently, decrease runoff, whereas others have reported that they decrease infiltration and increase runoff or that they have no effect on either of them. In addition, the influence of BSCs on other soil water balance components such as evaporation and soil moisture has hardly been studied and the scarce existing studies also show contradicting results. With the aim of enlightening the role that BSCs play in the water balance in semiarid areas, in this thesis it has been analysed the influence of different soil crust types, physical crusts and various developmental stages of BSCs, on key soil water balance components such as infiltration-runoff, evaporation and soil moisture, at plot scale. Furthermore, to better understand how these crusts affect hydrological processes, the influence of the type of crust and developmental stage of the crust on different properties that affect water movement and retention in soils has been analysed. Last, spectral characteristics of the different crust types, as well as of vegetation, have been examined with the aim of developing a spectral classification system for differentiation of these common ground covers in semiarid areas that allows their mapping and the modelling of the effects of the crusted areas on hydrological and erosion processes on larger spatial scales (hillslope and catchment). To conduct this research, two areas where BSCs are widespread and that represent key spatial distributions of BSCs in semiarid ecosystems were chosen in the province of Almeria (SE Spain): El Cautivo (in the Tabernas Desert), a badlands catchment with silty-loam textured soils, and Las Amoladeras (in the Cabo de Gata-Níjar Natural Park), a flat area with sandy-loam textured soils. Our results show that BSCs increase aggregate stability, water retention capacity, and organic carbon and total nitrogen content compared to physical crusts and, within BSCs, these properties increase in the crust and the underlying soil as the crust is more developed (in terms of greater biomass and later-successional species composition). The increase in soil properties with the presence of BSCs is especially noticeable in the top layer of soil (0.01 m) and decreases with depth (0.01-0.05 m) (Chapter I). Through their effect increasing surface roughness and physico-chemical soil properties, BSCs increase infiltration and decrease runoff compared to physical crusts. In general, infiltration increases with greater BSC development (Chapter II). However, there are exceptions to this general pattern that are conditioned by other factors such as the spatial scale under study or the type of rainfall. At small plot sizes (0.25 m2) and after 1h-high intensity simulated rainfall (50 mmh-1), we found that well-developed BSCs such as lichens, generate higher runoff rates than less developed BSCs as cyanobacteria, and similar runoff rates to physical crusts (Chapter II). Thus, at microplot scales and under extreme events, the effect of well-developed BSCs in enhancing infiltration due to their greater roughness can be overcome by their ability to clog soil pores when wet, thus increasing runoff. However, when the influence of BSCs on infiltration and runoff is analysed under natural rain events and at larger spatial scales (1-10 m2), we found that, in low intensity rainfalls, runoff decreases with the cover of well-developed BSCs (lichens) and this effect is higher as the plot size increases (Chapter III). Such decrease in runoff with the presence of well-developed BSCs is due to the microtopography that these crusts confer to soils. Under high intensity rainfalls, BSC cover has no significant effect on runoff yield and the main factor acting to determine runoff generation is rainfall intensity (Chapter III). The removal of the crust initially causes infiltration to increase. But this effect diminishes over time as raindrop impact reseals the surface and a new physical crust is formed that increases runoff (Chapter II). Moreover, crust disturbance by trampling but, especially by removal, causes a dramatic increase in erosion (Chapter II). Erosion also depends on the type of BSC. Well-developed crusts as lichens and mosses generate lower erosion rates than less developed crusts as cyanobacteria. Regarding the influence of BSCs on soil evaporation, under saturation conditions and warm ambient temperatures, soil water loss is quick in all types of surfaces and no significant differences are found in soils with or without BSCs (Chapter V). However, during long cold wet periods, soil water loss is faster in soils devoid of BSCs than in those covered by them. Thus, BSC-crusted soils maintain more soil moisture at the upper soil layer (0.03 m) than adjacent soils where the BSC has been removed, during wet periods. At deeper soil (0.10 m), soil moisture is similar in both BSC-crusted and uncrusted soils. The removal of the BSC causes a higher decrease in soil moisture in fine-textured soils (Cautivo), where the presence of BSCs has a stronger influence on increasing porosity and infiltration, than in coarse-textured soils (Las Amoladeras). During dry soil periods, soil moisture is similar in soils with or without BSCs (Chapter V). Last, a quantitative analysis of spectral characteristics of vegetation, physical crusts and BSC developmental stages has demonstrated the possibility of classifying these common ground covers in semiarid areas based on distinctive spectral features (Chapter VI). The application of the classification system developed to multi and hiperspectral provides the possibility for future mapping of spatial distribution and temporal dynamics of BSCs, which is crucial to incorporating the effects of crusted surfaces in current hydrological and erosion models. Summarizing, compared to physical crusts, the presence of BSCs increase physico-chemical properties of underlying soils, especially in the first centimeters of soil, and this enhancement is greater as the BSC is more developed. Due to this increase in soil properties and the higher roughness that BSCs provide to soils, BSCs increase water input by increasing infiltration and soil moisture, and soil moisture, and reduce water output by reducing soil evaporation. Hence, compared to physical crusts, the presence of BSCs and, especially the presence of well-developed BSCs, have an overall positive effect on the local water balance in semiarid ecosystems, in addition to having a major role in protecting soils from erosion.

Biological Soil Crusts: An Organizing Principle in Drylands

Biological Soil Crusts: An Organizing Principle in Drylands PDF Author: Bettina Weber
Publisher: Springer
ISBN: 3319302140
Category : Nature
Languages : en
Pages : 540

Get Book Here

Book Description
This volume summarizes our current understanding of biological soil crusts (biocrusts), which are omnipresent in dryland regions. Since they cover the soil surface, they influence, or even control, all surface exchange processes. Being one of the oldest terrestrial communities, biocrusts comprise a high diversity of cyanobacteria, algae, lichens and bryophytes together with uncounted bacteria, and fungi. The authors show that biocrusts are an integral part of dryland ecosystems, stabilizing soils, influencing plant germination and growth, and playing a key role in carbon, nitrogen and water cycling. Initial attempts have been made to use biocrusts as models in ecological theory. On the other hand, biocrusts are endangered by local disruptions and global change, highlighting the need for enhanced recovery methods. This book offers a comprehensive overview of the fascinating field of biocrust research, making it indispensable not only for scientists in this area, but also for land managers, policy makers, and anyone interested in the environment.

Biological Soil Crusts: Structure, Function, and Management

Biological Soil Crusts: Structure, Function, and Management PDF Author: Jayne Belnap
Publisher: Springer Science & Business Media
ISBN: 3642564755
Category : Science
Languages : en
Pages : 496

Get Book Here

Book Description
In arid lands, where vegetation is sparse or absent, the open ground is not bare but generally covered by a community of small, highly specialized organisms. Cyanobacteria, algae, microfungi, lichens, and bryophytes aggregate soil particles to form a coherent skin - the biological soil crust. It stabilizes and protects the soil surface from erosion by wind and water, influences water runoff and infiltration, and contributes nitrogen and carbon to desert soils. Soil surface disturbance, such as heavy livestock grazing, human trampling or off-road vehicles, breaks up the fragile soil crust, thus compromising its stability, structure, and productivity. This book is the first synthesis of the biology of soil crusts and their importance as an ecosystem component. Composition and functioning of different soil-crust types are discussed, and case studies are used to show the impact of crusts on landscape hydrology, soil stability, nutrient cycles, and land management.

Biological Soil Crusts: Spatio-temporal Development and Ecological Functions of Soil Surface Microbial Communities across Different Scales

Biological Soil Crusts: Spatio-temporal Development and Ecological Functions of Soil Surface Microbial Communities across Different Scales PDF Author: Shubin Lan
Publisher: Frontiers Media SA
ISBN: 2832553028
Category : Science
Languages : en
Pages : 339

Get Book Here

Book Description
Biological soil crusts (biocrusts) are widely distributed throughout the world, and cover approximately 12% of the terrestrial surface. Biocrusts are composed of cyanobacteria, algae, lichens, mosses, and a great diversity of other microorganisms, which bind soil particles together to form a layer of biological-soil matrix on the soil surface typically of several millimetres thickness. They are important sites of regional and global microbial diversity and perform multiple ecological functions (multifunctionality). During the evolution of terrestrial life on earth, biocrusts are regarded as the main colonising photosynthetic organisms before the advent of vascular vegetation. They not only represent the early stages of terrestrial ecosystems, but also facilitate the ecosystem’s development and succession. Therefore, biocrusts are recognised as ecological engineers in the natural development of ecosystems and for the restoration of degraded terrestrial ecosystems. The development of biocrusts is highly heterogeneous, which is reflected on both temporal and spatial scales, and this heterogeneity is still clearly visible even in a small scale. However, up to now, only limited knowledge is acquired on biocrust temporal and spatial organisation. In particular there still is a large knowledge gap regarding the various biocrust communities under different developmental states and their related physiological metabolisms and ecological functions. Therefore, in-depth studies of these issues will undoubtedly further promote our understanding of the heterogeneous development of biocrusts, as well as their ecological multifunctionality in terrestrial ecosystems. The relevant contributions are expected to provide a scientific basis for the management of biocrusts and technology development (e.g. cyanobacteria-induced biocrust technology) for ecological restoration and the promotion of soil health.

Ecology of Desert Systems

Ecology of Desert Systems PDF Author: Walter G. Whitford
Publisher: Academic Press
ISBN: 0081026552
Category : Science
Languages : en
Pages : 476

Get Book Here

Book Description
Nearly one-third of the land area on our planet is classified as arid or desert. Therefore, an understanding of the dynamics of such arid ecosystems is essential to managing those systems in a way that sustains human populations. This second edition of Ecology of Desert Systems provides a clear, extensive guide to the complex interactions involved in these areas. This book details the relationships between abiotic and biotic environments of desert ecosystems, demonstrating to readers how these interactions drive ecological processes. These include plant growth and animal reproductive success, the spatial and temporal distribution of vegetation and animals, and the influence of invasive species and anthropogenic climate change specific to arid systems. Drawing on the extensive experience of its expert authors, Ecology of Desert Systems is an essential guide to arid ecosystems for students looking for an overview of the field, researchers keen to learn how their work fits in to the overall picture, and those involved with environmental management of desert areas. - Highlights the complexity of global desert systems in a clear, concise way - Reviews the most current issues facing researchers in the field, including the spread of invasive species due to globalized trade, the impact of industrial mining, and climate change - Updated and extended to include information on invasive species management, industrial mining impacts, and the current and future role of climate change in desert systems

The Biology of Arid Soils

The Biology of Arid Soils PDF Author: Blaire Steven
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110419149
Category : Nature
Languages : en
Pages : 329

Get Book Here

Book Description
Soils have been called the most complex microbial ecosystems on Earth. A single gram of soil can harbor millions of microbial cells and thousands of species. However, certain soil environments, such as those experiencing dramatic change exposing new initial soils or that are limited in precipitation, limit the number of species able to survive in these systems. In this respect, these environments offer unparalleled opportunities to uncover the factors that control the development and maintenance of complex microbial ecosystems. This book collects chapters that discuss the abiotic factors that structure arid and initial soil communities as well as the diversity and structure of the biological communities in these soils from viruses to plants.

Plant Strategies, Vegetation Processes, and Ecosystem Properties

Plant Strategies, Vegetation Processes, and Ecosystem Properties PDF Author: J. Philip Grime
Publisher: John Wiley & Sons
ISBN: 047085040X
Category : Science
Languages : en
Pages : 466

Get Book Here

Book Description
Plant Strategies, Vegetation Processes, and Ecosystem Properties, Second Edition, is a thoroughly updated and comprehensive new edition of the very successful Plant Strategies and Vegetative Processes, which controversially proposed the existence of widely-recurring plant functional types with predictable relationships to vegetation structure and dynamics. This second edition uses evidence from many parts of the world to re-examine these concepts in the light of the enormous expansion in the literature. Features include: * A new section covering all aspects of ecosystem properties * New chapters on Assembling of Communities Rarification and Extinction Colonisation and Invasion * Principles and methodologies of a range of international tests including case study examples * Chapter summaries for a quick reference guide * Index of species names Written in a very readable style, this book is an invaluable reference source for researchers in the areas of plant, animal, and community ecology, conservation and land management. 'Written by one of the foremost authorities in the field, summarising over 35 years of research. A book all plant ecologists will want to read.' - Jonathan Silvertown, Department of Biological Sciences, The Open University, UK. 'The coverage is outstanding and comprehensive.' - Simon A. Levin, Department of Ecology and Evolutionary Biology, Princeton University, USA

Forest and Rangeland Soils of the United States Under Changing Conditions

Forest and Rangeland Soils of the United States Under Changing Conditions PDF Author: Richard V. Pouyat
Publisher: Springer Nature
ISBN: 3030452166
Category : Science
Languages : en
Pages : 306

Get Book Here

Book Description
This open access book synthesizes leading-edge science and management information about forest and rangeland soils of the United States. It offers ways to better understand changing conditions and their impacts on soils, and explores directions that positively affect the future of forest and rangeland soil health. This book outlines soil processes and identifies the research needed to manage forest and rangeland soils in the United States. Chapters give an overview of the state of forest and rangeland soils research in the Nation, including multi-decadal programs (chapter 1), then summarizes various human-caused and natural impacts and their effects on soil carbon, hydrology, biogeochemistry, and biological diversity (chapters 2–5). Other chapters look at the effects of changing conditions on forest soils in wetland and urban settings (chapters 6–7). Impacts include: climate change, severe wildfires, invasive species, pests and diseases, pollution, and land use change. Chapter 8 considers approaches to maintaining or regaining forest and rangeland soil health in the face of these varied impacts. Mapping, monitoring, and data sharing are discussed in chapter 9 as ways to leverage scientific and human resources to address soil health at scales from the landscape to the individual parcel (monitoring networks, data sharing Web sites, and educational soils-centered programs are tabulated in appendix B). Chapter 10 highlights opportunities for deepening our understanding of soils and for sustaining long-term ecosystem health and appendix C summarizes research needs. Nine regional summaries (appendix A) offer a more detailed look at forest and rangeland soils in the United States and its Affiliates.

Soil Moisture Importance

Soil Moisture Importance PDF Author: Ram Swaroop Meena
Publisher: BoD – Books on Demand
ISBN: 1839680954
Category : Science
Languages : en
Pages : 156

Get Book Here

Book Description
Poor soil and water management are often related to insufficient or poor rainfall distribution around the world. In modern agriculture, over-cultivation, deforestation, overgrazing, and high dependence on an irrigated cropping system with water-intensive crops increase soil and water erosion. This book examines ways of improving soil moisture management to support environmental, food, social, and economic security under a sustainable ecosystem.

Rangeland Systems

Rangeland Systems PDF Author: David D. Briske
Publisher: Springer
ISBN: 3319467093
Category : Technology & Engineering
Languages : en
Pages : 664

Get Book Here

Book Description
This book is open access under a CC BY-NC 2.5 license. This book provides an unprecedented synthesis of the current status of scientific and management knowledge regarding global rangelands and the major challenges that confront them. It has been organized around three major themes. The first summarizes the conceptual advances that have occurred in the rangeland profession. The second addresses the implications of these conceptual advances to management and policy. The third assesses several major challenges confronting global rangelands in the 21st century. This book will compliment applied range management textbooks by describing the conceptual foundation on which the rangeland profession is based. It has been written to be accessible to a broad audience, including ecosystem managers, educators, students and policy makers. The content is founded on the collective experience, knowledge and commitment of 80 authors who have worked in rangelands throughout the world. Their collective contributions indicate that a more comprehensive framework is necessary to address the complex challenges confronting global rangelands. Rangelands represent adaptive social-ecological systems, in which societal values, organizations and capacities are of equal importance to, and interact with, those of ecological processes. A more comprehensive framework for rangeland systems may enable management agencies, and educational, research and policy making organizations to more effectively assess complex problems and develop appropriate solutions.