The Riemann Hypothesis in Characteristic p in Historical Perspective

The Riemann Hypothesis in Characteristic p in Historical Perspective PDF Author: Peter Roquette
Publisher: Springer
ISBN: 3319990675
Category : Mathematics
Languages : en
Pages : 239

Get Book Here

Book Description
This book tells the story of the Riemann hypothesis for function fields (or curves) starting with Artin's 1921 thesis, covering Hasse's work in the 1930s on elliptic fields and more, and concluding with Weil's final proof in 1948. The main sources are letters which were exchanged among the protagonists during that time, found in various archives, mostly the University Library in Göttingen. The aim is to show how the ideas formed, and how the proper notions and proofs were found, providing a particularly well-documented illustration of how mathematics develops in general. The book is written for mathematicians, but it does not require any special knowledge of particular mathematical fields.

The Riemann Hypothesis in Characteristic p in Historical Perspective

The Riemann Hypothesis in Characteristic p in Historical Perspective PDF Author: Peter Roquette
Publisher: Springer
ISBN: 3319990675
Category : Mathematics
Languages : en
Pages : 239

Get Book Here

Book Description
This book tells the story of the Riemann hypothesis for function fields (or curves) starting with Artin's 1921 thesis, covering Hasse's work in the 1930s on elliptic fields and more, and concluding with Weil's final proof in 1948. The main sources are letters which were exchanged among the protagonists during that time, found in various archives, mostly the University Library in Göttingen. The aim is to show how the ideas formed, and how the proper notions and proofs were found, providing a particularly well-documented illustration of how mathematics develops in general. The book is written for mathematicians, but it does not require any special knowledge of particular mathematical fields.

Series and Products in the Development of Mathematics: Volume 2

Series and Products in the Development of Mathematics: Volume 2 PDF Author: Ranjan Roy
Publisher: Cambridge University Press
ISBN: 1108573150
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
This is the second volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible even to advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 examines more recent results, including deBranges' resolution of Bieberbach's conjecture and Nevanlinna's theory of meromorphic functions.

Series and Products in the Development of Mathematics

Series and Products in the Development of Mathematics PDF Author: Ranjan Roy
Publisher: Cambridge University Press
ISBN: 1108709370
Category : Mathematics
Languages : en
Pages : 479

Get Book Here

Book Description
"Sources in the Development of Mathematics: Series and Products from the Fifteenth to the Twenty-first Century, my book of 2011, was intended for an audience of graduate students or beyond. However, since much of its mathematics lies at the foundations of the undergraduate mathematics curriculum, I decided to use portions of my book as the text for an advanced undergraduate course. I was very pleased to find that my curious and diligent students, of varied levels of mathematical talent, could understand a good bit of the material and get insight into mathematics they had already studied as well as topics with which they were unfamiliar. Of course, the students could profitably study such topics from good textbooks. But I observed that when they read original proofs, perhaps with gaps or with slightly opaque arguments, students gained very valuable insight into the process of mathematical thinking and intuition. Moreover, the study of the steps, often over long periods of time, by which earlier mathematicians refined and clarified their arguments revealed to my students the essential points at the crux of those results, points that may be more difficult to discern in later streamlined presentations. As they worked to understand the material, my students witnessed the difficulty and beauty of original mathematical work and this was a source of great enjoyment to many of them. I have now thrice taught this course, with extremely positive student response"--

Series and Products in the Development of Mathematics: Volume 1

Series and Products in the Development of Mathematics: Volume 1 PDF Author: Ranjan Roy
Publisher: Cambridge University Press
ISBN: 1108573185
Category : Mathematics
Languages : en
Pages : 780

Get Book Here

Book Description
This is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible to even advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including deBranges' solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.

Elliptic Curves (Second Edition)

Elliptic Curves (Second Edition) PDF Author: James S Milne
Publisher: World Scientific
ISBN: 9811221855
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.

The Brauer-Hasse-Noether Theorem in Historical Perspective

The Brauer-Hasse-Noether Theorem in Historical Perspective PDF Author: Peter Roquette
Publisher: Springer Science & Business Media
ISBN: 3540269681
Category : Mathematics
Languages : en
Pages : 92

Get Book Here

Book Description
The unpublished writings of Helmut Hasse, consisting of letters, manuscripts and other papers, are kept at the Handschriftenabteilung of the University Library at Göttingen. Hasse had an extensive correspondence; he liked to exchange mathematical ideas, results and methods freely with his colleagues. There are more than 8000 documents preserved. Although not all of them are of equal mathematical interest, searching through this treasure can help us to assess the development of Number Theory through the 1920s and 1930s. The present volume is largely based on the letters and other documents its author has found concerning the Brauer-Hasse-Noether Theorem in the theory of algebras; this covers the years around 1931. In addition to the documents from the literary estates of Hasse and Brauer in Göttingen, the author also makes use of some letters from Emmy Noether to Richard Brauer that are preserved at the Bryn Mawr College Library (Pennsylvania, USA).

Quadratic Number Fields

Quadratic Number Fields PDF Author: Franz Lemmermeyer
Publisher: Springer Nature
ISBN: 3030786528
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.

Paul Lorenzen -- Mathematician and Logician

Paul Lorenzen -- Mathematician and Logician PDF Author: Gerhard Heinzmann
Publisher: Springer Nature
ISBN: 3030658244
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
This open access book examines the many contributions of Paul Lorenzen, an outstanding philosopher from the latter half of the 20th century. It features papers focused on integrating Lorenzen's original approach into the history of logic and mathematics. The papers also explore how practitioners can implement Lorenzen’s systematical ideas in today’s debates on proof-theoretic semantics, databank management, and stochastics. Coverage details key contributions of Lorenzen to constructive mathematics, Lorenzen’s work on lattice-groups and divisibility theory, and modern set theory and Lorenzen’s critique of actual infinity. The contributors also look at the main problem of Grundlagenforschung and Lorenzen’s consistency proof and Hilbert’s larger program. In addition, the papers offer a constructive examination of a Russell-style Ramified Type Theory and a way out of the circularity puzzle within the operative justification of logic and mathematics. Paul Lorenzen's name is associated with the Erlangen School of Methodical Constructivism, of which the approach in linguistic philosophy and philosophy of science determined philosophical discussions especially in Germany in the 1960s and 1970s. This volume features 10 papers from a meeting that took place at the University of Konstanz.

The Story of Algebraic Numbers in the First Half of the 20th Century

The Story of Algebraic Numbers in the First Half of the 20th Century PDF Author: Władysław Narkiewicz
Publisher: Springer
ISBN: 3030037541
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
The book is aimed at people working in number theory or at least interested in this part of mathematics. It presents the development of the theory of algebraic numbers up to the year 1950 and contains a rather complete bibliography of that period. The reader will get information about results obtained before 1950. It is hoped that this may be helpful in preventing rediscoveries of old results, and might also inspire the reader to look at the work done earlier, which may hide some ideas which could be applied in contemporary research.

Emil Artin and Helmut Hasse

Emil Artin and Helmut Hasse PDF Author: Günther Frei
Publisher: Springer Science & Business Media
ISBN: 3034807155
Category : Mathematics
Languages : en
Pages : 499

Get Book Here

Book Description
This volume consists of the English translations of the letters exchanged between Emil Artin to Helmut Hasse written from 1921 until 1958. The letters are accompanied by extensive comments explaining the mathematical background and giving the information needed for understanding these letters. Most letters deal with class field theory and shed a light on the birth of one of its most profound results: Artin's reciprocity law.