Author: Barry Mazur
Publisher: Cambridge University Press
ISBN: 1107101921
Category : Mathematics
Languages : en
Pages : 155
Book Description
This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.
Prime Numbers and the Riemann Hypothesis
Author: Barry Mazur
Publisher: Cambridge University Press
ISBN: 1107101921
Category : Mathematics
Languages : en
Pages : 155
Book Description
This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.
Publisher: Cambridge University Press
ISBN: 1107101921
Category : Mathematics
Languages : en
Pages : 155
Book Description
This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.
The Riemann Hypothesis and Prime Number Theorem
Author: Daljit S. Jandu
Publisher:
ISBN: 9780977139903
Category : Number theory
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780977139903
Category : Number theory
Languages : en
Pages : 0
Book Description
Prime Obsession
Author: John Derbyshire
Publisher: Joseph Henry Press
ISBN: 0309141257
Category : Science
Languages : en
Pages : 447
Book Description
In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.
Publisher: Joseph Henry Press
ISBN: 0309141257
Category : Science
Languages : en
Pages : 447
Book Description
In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.
The Prime Number Theorem
Author: G. J. O. Jameson
Publisher: Cambridge University Press
ISBN: 9780521891103
Category : Mathematics
Languages : en
Pages : 266
Book Description
At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The prime number theorem tells us what this formula is and it is indisputably one of the great classical theorems of mathematics. This textbook gives an introduction to the prime number theorem suitable for advanced undergraduates and beginning graduate students. The author's aim is to show the reader how the tools of analysis can be used in number theory to attack a 'real' problem, and it is based on his own experiences of teaching this material.
Publisher: Cambridge University Press
ISBN: 9780521891103
Category : Mathematics
Languages : en
Pages : 266
Book Description
At first glance the prime numbers appear to be distributed in a very irregular way amongst the integers, but it is possible to produce a simple formula that tells us (in an approximate but well defined sense) how many primes we can expect to find that are less than any integer we might choose. The prime number theorem tells us what this formula is and it is indisputably one of the great classical theorems of mathematics. This textbook gives an introduction to the prime number theorem suitable for advanced undergraduates and beginning graduate students. The author's aim is to show the reader how the tools of analysis can be used in number theory to attack a 'real' problem, and it is based on his own experiences of teaching this material.
The Riemann Hypothesis
Author: Peter B. Borwein
Publisher: Springer Science & Business Media
ISBN: 0387721258
Category : Mathematics
Languages : en
Pages : 543
Book Description
The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture.
Publisher: Springer Science & Business Media
ISBN: 0387721258
Category : Mathematics
Languages : en
Pages : 543
Book Description
The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture.
Riemann's Zeta Function
Author: Harold M. Edwards
Publisher: Courier Corporation
ISBN: 9780486417400
Category : Mathematics
Languages : en
Pages : 338
Book Description
Superb high-level study of one of the most influential classics in mathematics examines landmark 1859 publication entitled “On the Number of Primes Less Than a Given Magnitude,” and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other related topics. English translation of Riemann's original document appears in the Appendix.
Publisher: Courier Corporation
ISBN: 9780486417400
Category : Mathematics
Languages : en
Pages : 338
Book Description
Superb high-level study of one of the most influential classics in mathematics examines landmark 1859 publication entitled “On the Number of Primes Less Than a Given Magnitude,” and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other related topics. English translation of Riemann's original document appears in the Appendix.
The Distribution of Prime Numbers
Author: Albert Edward Ingham
Publisher: Cambridge University Press
ISBN: 9780521397896
Category : Mathematics
Languages : en
Pages : 140
Book Description
Originally published in 1934, this volume presents the theory of the distribution of the prime numbers in the series of natural numbers. Despite being long out of print, it remains unsurpassed as an introduction to the field.
Publisher: Cambridge University Press
ISBN: 9780521397896
Category : Mathematics
Languages : en
Pages : 140
Book Description
Originally published in 1934, this volume presents the theory of the distribution of the prime numbers in the series of natural numbers. Despite being long out of print, it remains unsurpassed as an introduction to the field.
The Riemann Hypothesis and the Distribution of Prime Numbers
Author: Naji Arwashan
Publisher: Nova Science Publishers
ISBN: 9781536194821
Category : Mathematics
Languages : en
Pages : 229
Book Description
"This book is an introductory and comprehensive presentation of the Riemann Hypothesis, one of the most important open questions in math today. It is introductory because it is written in an accessible and detailed format that makes it easy to read and understand. And it is comprehensive because it explains and proves all the mathematical ideas surrounding and leading to the formulation of the hypothesis. Chapter 1 begins by defining the zeta function and exploring some of its properties when the argument is a real number. It proceeds to identify the series' domain of convergence and proves Euler's product formula. Chapter 2 introduces complex numbers and the complex analytic tools necessary to understand the zeta function in complex plane. Chapter 3 extends the domain of the zeta function for the first time by introducing the eta function. Presenting proofs by Sondow, it is shown that zeta can be defined for any complex number whose real part is positive. Next, the functional equation of the zeta function is derived in Chapter 4. This provides a method to extend the definition of zeta to the entirety of the complex plane. Chapter 5 is where the Riemann Hypothesis is properly introduced for the first time. It relates the zeros of the zeta and eta functions which leads to a simple formulation of the hypothesis. Chapters 6 and 7 connect the topics of zeta's zeros and the distribution of prime numbers. Chapter 6 introduces Riemann explicit formula and explains the use of Mobius transform to rewrite the prime counting function in terms of the Riemann prime counting one and it provides a detailed numerical example on how to use the Riemann's formula. Chapter 7 derives the von Mangoldt formula via the residue theorem and elucidates some of its important properties. Certain necessary mathematical tools, such as Fourier analysis and theta and gamma functional equations, are included in the appendices to make the chapters more concise and focused"--
Publisher: Nova Science Publishers
ISBN: 9781536194821
Category : Mathematics
Languages : en
Pages : 229
Book Description
"This book is an introductory and comprehensive presentation of the Riemann Hypothesis, one of the most important open questions in math today. It is introductory because it is written in an accessible and detailed format that makes it easy to read and understand. And it is comprehensive because it explains and proves all the mathematical ideas surrounding and leading to the formulation of the hypothesis. Chapter 1 begins by defining the zeta function and exploring some of its properties when the argument is a real number. It proceeds to identify the series' domain of convergence and proves Euler's product formula. Chapter 2 introduces complex numbers and the complex analytic tools necessary to understand the zeta function in complex plane. Chapter 3 extends the domain of the zeta function for the first time by introducing the eta function. Presenting proofs by Sondow, it is shown that zeta can be defined for any complex number whose real part is positive. Next, the functional equation of the zeta function is derived in Chapter 4. This provides a method to extend the definition of zeta to the entirety of the complex plane. Chapter 5 is where the Riemann Hypothesis is properly introduced for the first time. It relates the zeros of the zeta and eta functions which leads to a simple formulation of the hypothesis. Chapters 6 and 7 connect the topics of zeta's zeros and the distribution of prime numbers. Chapter 6 introduces Riemann explicit formula and explains the use of Mobius transform to rewrite the prime counting function in terms of the Riemann prime counting one and it provides a detailed numerical example on how to use the Riemann's formula. Chapter 7 derives the von Mangoldt formula via the residue theorem and elucidates some of its important properties. Certain necessary mathematical tools, such as Fourier analysis and theta and gamma functional equations, are included in the appendices to make the chapters more concise and focused"--
A Primer of Analytic Number Theory
Author: Jeffrey Stopple
Publisher: Cambridge University Press
ISBN: 9780521012539
Category : Mathematics
Languages : en
Pages : 404
Book Description
An undergraduate-level 2003 introduction whose only prerequisite is a standard calculus course.
Publisher: Cambridge University Press
ISBN: 9780521012539
Category : Mathematics
Languages : en
Pages : 404
Book Description
An undergraduate-level 2003 introduction whose only prerequisite is a standard calculus course.
The Prime Numbers and Their Distribution
Author: Gerald Tenenbaum
Publisher: American Mathematical Soc.
ISBN: 0821816470
Category : Mathematics
Languages : en
Pages : 137
Book Description
One notable new direction this century in the study of primes has been the influx of ideas from probability. The goal of this book is to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. The book opens with some classic topics of number theory. It ends with a discussion of some of the outstanding conjectures in number theory. In between are an excellent chapter on the stochastic properties of primes and a walk through an elementary proof of the Prime Number Theorem. This book is suitable for anyone who has had a little number theory and some advanced calculus involving estimates. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians.
Publisher: American Mathematical Soc.
ISBN: 0821816470
Category : Mathematics
Languages : en
Pages : 137
Book Description
One notable new direction this century in the study of primes has been the influx of ideas from probability. The goal of this book is to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. The book opens with some classic topics of number theory. It ends with a discussion of some of the outstanding conjectures in number theory. In between are an excellent chapter on the stochastic properties of primes and a walk through an elementary proof of the Prime Number Theorem. This book is suitable for anyone who has had a little number theory and some advanced calculus involving estimates. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians.