The Reaction Path in Chemistry: Current Approaches and Perspectives

The Reaction Path in Chemistry: Current Approaches and Perspectives PDF Author: D. Heidrich
Publisher: Springer Science & Business Media
ISBN: 9401585393
Category : Science
Languages : en
Pages : 303

Get Book Here

Book Description
The so-called reaction path (RP) with respect to the potential energy or the Gibbs energy ("free enthalpy") is one of the most fundamental concepts in chemistry. It significantly helps to display and visualize the results of the complex microscopic processes forming a chemical reaction. This concept is an implicit component of conventional transition state theory (TST). The model of the reaction path and the TST form a qualitative framework which provides chemists with a better understanding of chemical reactions and stirs their imagination. However, an exact calculation of the RP and its neighbourhood becomes important when the RP is used as a tool for a detailed exploring of reaction mechanisms and particularly when it is used as a basis for reaction rate theories above and beyond TST. The RP is a theoretical instrument that now forms the "theoretical heart" of "direct dynamics". It is particularly useful for the interpretation of reactions in common chemical systems. A suitable definition of the RP of potential energy surfaces is necessary to ensure that the reaction theories based on it will possess sufficiently high quality. Thus, we have to consider three important fields of research: - Analysis of potential energy surfaces and the definition and best calculation of the RPs or - at least - of a number of selected and chemically interesting points on it. - The further development of concrete vers ions of reaction theory beyond TST which are applicable for common chemical systems using the RP concept.

The Reaction Path in Chemistry: Current Approaches and Perspectives

The Reaction Path in Chemistry: Current Approaches and Perspectives PDF Author: D. Heidrich
Publisher: Springer Science & Business Media
ISBN: 9401585393
Category : Science
Languages : en
Pages : 303

Get Book Here

Book Description
The so-called reaction path (RP) with respect to the potential energy or the Gibbs energy ("free enthalpy") is one of the most fundamental concepts in chemistry. It significantly helps to display and visualize the results of the complex microscopic processes forming a chemical reaction. This concept is an implicit component of conventional transition state theory (TST). The model of the reaction path and the TST form a qualitative framework which provides chemists with a better understanding of chemical reactions and stirs their imagination. However, an exact calculation of the RP and its neighbourhood becomes important when the RP is used as a tool for a detailed exploring of reaction mechanisms and particularly when it is used as a basis for reaction rate theories above and beyond TST. The RP is a theoretical instrument that now forms the "theoretical heart" of "direct dynamics". It is particularly useful for the interpretation of reactions in common chemical systems. A suitable definition of the RP of potential energy surfaces is necessary to ensure that the reaction theories based on it will possess sufficiently high quality. Thus, we have to consider three important fields of research: - Analysis of potential energy surfaces and the definition and best calculation of the RPs or - at least - of a number of selected and chemically interesting points on it. - The further development of concrete vers ions of reaction theory beyond TST which are applicable for common chemical systems using the RP concept.

Transition State

Transition State PDF Author: Takayuki Fueno
Publisher: CRC Press
ISBN: 100071747X
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description
The transition state is the critical configuration of a reaction system situated at the highest point of the most favorable reaction path on the potential-energy surface, its characteristics governing the dynamic behavior of reacting systems decisively. This text presents an accurate survey of current theoretical investigations of chemical reactions, with a focus on the nature of the transition state. Its scope ranges from general basic theories associated with the transition states, to their computer-assisted applications, through to a number of reactions in a state-of-the-art fashion. It covers various types of gas-phase elementary reactions, as well as some specific types of chemical processes taking place in the liquid phase. Also investigated is the recently developing transition state spectroscopy. This text will not only serve as a contemporary reference book on the concept of the transition state, but will also assist the readers in gaining valuable key principles regarding the essence of chemical kinetics and dynamics.

Femtochemistry And Femtobiology: Ultrafast Dynamics In Molecular Science

Femtochemistry And Femtobiology: Ultrafast Dynamics In Molecular Science PDF Author: Abderrazzak Douhal
Publisher: World Scientific
ISBN: 9814489336
Category : Science
Languages : en
Pages : 854

Get Book Here

Book Description
This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological molecules, surfaces and nanostructures. At the same time it stresses the different ways to control the rates and pathways of reactive events in chemistry and biology. Particular emphasis is given to biological processes as an area where femtodynamics is becoming very useful for resolving the structural dynamics from techniques such as electron diffraction, and X-ray and IR spectroscopy. Finally, the latest developments in quantum control (in both theory and experiment) and the experimental pulse-shaping techniques are described.

Quantum-Mechanical Prediction of Thermochemical Data

Quantum-Mechanical Prediction of Thermochemical Data PDF Author: Jerzy Cioslowski
Publisher: Springer Science & Business Media
ISBN: 0306476320
Category : Science
Languages : en
Pages : 264

Get Book Here

Book Description
For the first time in the history of chemical sciences, theoretical predictions have achieved the level of reliability that allows them to - val experimental measurements in accuracy on a routine basis. Only a decade ago, such a statement would be valid only with severe qualifi- tions as high-level quantum-chemical calculations were feasible only for molecules composed of a few atoms. Improvements in both hardware performance and the level of sophistication of electronic structure me- ods have contributed equally to this impressive progress that has taken place only recently. The contemporary chemist interested in predicting thermochemical properties such as the standard enthalpy of formation has at his disposal a wide selection of theoretical approaches, differing in the range of app- cability, computational cost, and the expected accuracy. Ranging from high-level treatments of electron correlation used in conjunction with extrapolative schemes to semiempirical methods, these approaches have well-known advantages and shortcomings that determine their usefulness in studies of particular types of chemical species. The growing number of published computational schemes and their variants, testing sets, and performance statistics often makes it difficult for a scientist not well versed in the language of quantum theory to identify the method most adequate for his research needs.

Advances in Density Functional Theory

Advances in Density Functional Theory PDF Author:
Publisher: Academic Press
ISBN: 0080582583
Category : Science
Languages : en
Pages : 417

Get Book Here

Book Description
Quantum mechanics can describe the detailed structure and behavior of matter, from electrons, atoms, and molecules, to the whole universe. It is one of the fields of knowledge that yield extraordinary precessions, limited only by the computational resources available. Among these methods is density functional theory (DFT), which permits one to solve the equations of quantum mechanics more efficiently than with any related method.The present volume represents the most comprehensive summary currently available in density functional theory and its applications in chemistry from atomic physics to molecular dynamics. DFT is currently being used by more than fifty percent of computational chemists.

Encyclopedia of Chemical Physics and Physical Chemistry

Encyclopedia of Chemical Physics and Physical Chemistry PDF Author: John H. Moore
Publisher: CRC Press
ISBN: 1003803296
Category : Science
Languages : en
Pages : 1161

Get Book Here

Book Description
The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.

The Mountain Pass Theorem

The Mountain Pass Theorem PDF Author: Youssef Jabri
Publisher: Cambridge University Press
ISBN: 9781139440813
Category : Mathematics
Languages : en
Pages : 390

Get Book Here

Book Description
This 2003 book presents min-max methods through a study of the different faces of the celebrated Mountain Pass Theorem (MPT) of Ambrosetti and Rabinowitz. The reader is led from the most accessible results to the forefront of the theory, and at each step in this walk between the hills, the author presents the extensions and variants of the MPT in a complete and unified way. Coverage includes standard topics, but it also covers other topics covered nowhere else in book form: the non-smooth MPT; the geometrically constrained MPT; numerical approaches to the MPT; and even more exotic variants. Each chapter has a section with supplementary comments and bibliographical notes, and there is a rich bibliography and a detailed index to aid the reader. The book is suitable for researchers and graduate students. Nevertheless, the style and the choice of the material make it accessible to all newcomers to the field.

Ultrafast Phenomena XII

Ultrafast Phenomena XII PDF Author: T. Elsaesser
Publisher: Springer Science & Business Media
ISBN: 3642565468
Category : Science
Languages : en
Pages : 709

Get Book Here

Book Description
This book presents the latest advances in ultrafast science, including ultrafast laser and measurement technology, and studies of ultrafast phenomena. It summarizes the results presented at the 12th Ultrafast Phenomena Conference and reviews the state of the art of this important and rapidly advancing field.

Electron, Spin and Momentum Densities and Chemical Reactivity

Electron, Spin and Momentum Densities and Chemical Reactivity PDF Author: Paul G. Mezey
Publisher: Springer Science & Business Media
ISBN: 030646943X
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description
The electron density of a non-degenerate ground state system determines essentially all physical properties of the system. This statement of the Hohenberg–Kohn theorem of Density Functional Theory plays an exceptionally important role among all the fundamental relations of Molecular Physics. In particular, the electron density distribution and the dynamic properties of this density determine both the local and global reactivities of molecules. High resolution experimental electron densities are increasingly becoming available for more and more molecules, including macromolecules such as proteins. Furthermore, many of the early difficulties with the determination of electron densities in the vicinity of light nuclei have been overcome. These electron densities provide detailed information that gives important insight into the fundamentals of molecular structure and a better understanding of chemical reactions. The results of electron density analysis are used in a variety of applied fields, such as pharmaceutical drug discovery and biotechnology. If the functional form of a molecular electron density is known, then various molecular properties affecting reactivity can be determined by quantum chemical computational techniques or alternative approximate methods.

Computational Approaches to Biochemical Reactivity

Computational Approaches to Biochemical Reactivity PDF Author: Gábor Náray-Szabó
Publisher: Springer Science & Business Media
ISBN: 9781402004155
Category : Science
Languages : en
Pages : 396

Get Book Here

Book Description
A quantitative description of the action of enzymes and other biological systems is both a challenge and a fundamental requirement for further progress in our und- standing of biochemical processes. This can help in practical design of new drugs and in the development of artificial enzymes as well as in fundamental understanding of the factors that control the activity of biological systems. Structural and biochemical st- ies have yielded major insights about the action of biological molecules and the mechanism of enzymatic reactions. However it is not entirely clear how to use this - portant information in a consistent and quantitative analysis of the factors that are - sponsible for rate acceleration in enzyme active sites. The problem is associated with the fact that reaction rates are determined by energetics (i. e. activation energies) and the available experimental methods by themselves cannot provide a correlation - tween structure and energy. Even mutations of specific active site residues, which are extremely useful, cannot tell us about the totality of the interaction between the active site and the substrate. In fact, short of inventing experiments that allow one to measure the forces in enzyme active sites it is hard to see how can one use a direct experimental approach to unambiguously correlate the structure and function of enzymes. In fact, in view of the complexity of biological systems it seems that only computers can handle the task of providing a quantitative structure-function correlation.