Author: Walter Heitler
Publisher: Courier Corporation
ISBN: 9780486645582
Category : Science
Languages : en
Pages : 468
Book Description
The first comprehensive treatment of quantum physics in any language, this classic introduction to the basic theory remains highly recommended and in wide use, both as a text and as a reference. A unified and accurate guide to the application of radiative processes, it explores the mathematics and physics of quantum theory. 1954 edition.
The Quantum Theory of Radiation
Foundations of Radiation Theory and Quantum Electrodynamics
Author: Asim Barut
Publisher: Springer Science & Business Media
ISBN: 1475706715
Category : Science
Languages : en
Pages : 218
Book Description
Publisher: Springer Science & Business Media
ISBN: 1475706715
Category : Science
Languages : en
Pages : 218
Book Description
The Physical Principles of the Quantum Theory
Author: Werner Heisenberg
Publisher: Courier Corporation
ISBN: 0486318419
Category : Science
Languages : en
Pages : 212
Book Description
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of Dirac, Schroedinger, Compton, Einstein, others. "An authoritative statement of Heisenberg's views on this aspect of the quantum theory." — Nature.
Publisher: Courier Corporation
ISBN: 0486318419
Category : Science
Languages : en
Pages : 212
Book Description
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of Dirac, Schroedinger, Compton, Einstein, others. "An authoritative statement of Heisenberg's views on this aspect of the quantum theory." — Nature.
The Theory of Photons and Electrons
Author: Josef M. Jauch
Publisher: Springer Science & Business Media
ISBN: 3642809510
Category : Science
Languages : en
Pages : 569
Book Description
Since the discovery of the corpuscular nature of radiation by Planck more than fifty years ago the quantum theory of radiation has gone through many stages of development which seemed to alternate between spectacular success and hopeless frustration. The most recent phase started in 1947 with the discovery of the electromagnetic level shifts and the realization that the exist ing theory, when properly interpreted, was perfectly adequate to explain these effects to an apparently unlimited degree of accuracy. This phase has now reached a certain conclusion: for the first time in the checkered history of this field of research it has become possible to give a unified and consistent presen tation of radiation theory in full conformity with the principles of relativity and quantum mechanics. To this task the present book is devoted. The plan for a book of this type was conceived during the year 1951 while the first-named author (J. M. J. ) held a Fulbright research scholarship at Cambridge University. During this year of freedom from teaching and other duties he had the opportunity of conferring with physicists in many different countries on the recent developments in radiation theory. The comments seemed to be almost unanimous that a book on quantum electrodynamics at the present time would be of inestimable value to physicists in many parts of the world. However, it was not until the spring of 1952 that work on the book began in earnest.
Publisher: Springer Science & Business Media
ISBN: 3642809510
Category : Science
Languages : en
Pages : 569
Book Description
Since the discovery of the corpuscular nature of radiation by Planck more than fifty years ago the quantum theory of radiation has gone through many stages of development which seemed to alternate between spectacular success and hopeless frustration. The most recent phase started in 1947 with the discovery of the electromagnetic level shifts and the realization that the exist ing theory, when properly interpreted, was perfectly adequate to explain these effects to an apparently unlimited degree of accuracy. This phase has now reached a certain conclusion: for the first time in the checkered history of this field of research it has become possible to give a unified and consistent presen tation of radiation theory in full conformity with the principles of relativity and quantum mechanics. To this task the present book is devoted. The plan for a book of this type was conceived during the year 1951 while the first-named author (J. M. J. ) held a Fulbright research scholarship at Cambridge University. During this year of freedom from teaching and other duties he had the opportunity of conferring with physicists in many different countries on the recent developments in radiation theory. The comments seemed to be almost unanimous that a book on quantum electrodynamics at the present time would be of inestimable value to physicists in many parts of the world. However, it was not until the spring of 1952 that work on the book began in earnest.
Quantum Mechanics
Author: Ajoy Ghatak
Publisher: Springer Science & Business Media
ISBN: 9781402021299
Category : Science
Languages : en
Pages : 936
Book Description
An understanding of quantum mechanics is vital to all students of physics, chemistry and electrical engineering, but requires a lot of mathematical concepts, the details of which are given with great clarity in this book. Various concepts have been derived from first principles, so it can also be used for self-study. The chapters on the JWKB approximation, time-independent perturbation theory and effects of magnetic field stand out for their clarity and easy-to-understand mathematics. Two complete chapters on the linear harmonic oscillator provide a very detailed discussion of one of the most fundamental problems in quantum mechanics. Operator algebra is used to show the ease with which one can calculate the harmonic oscillator wave functions and study the evolution of the coherent state. Similarly, three chapters on angular momentum give a detailed account of this important problem. Perhaps the most attractive feature of the book is the excellent balance between theory and applications and the large number of applications in such diverse areas as astrophysics, nuclear physics, atomic and molecular spectroscopy, solid-state physics, and quantum well structures.
Publisher: Springer Science & Business Media
ISBN: 9781402021299
Category : Science
Languages : en
Pages : 936
Book Description
An understanding of quantum mechanics is vital to all students of physics, chemistry and electrical engineering, but requires a lot of mathematical concepts, the details of which are given with great clarity in this book. Various concepts have been derived from first principles, so it can also be used for self-study. The chapters on the JWKB approximation, time-independent perturbation theory and effects of magnetic field stand out for their clarity and easy-to-understand mathematics. Two complete chapters on the linear harmonic oscillator provide a very detailed discussion of one of the most fundamental problems in quantum mechanics. Operator algebra is used to show the ease with which one can calculate the harmonic oscillator wave functions and study the evolution of the coherent state. Similarly, three chapters on angular momentum give a detailed account of this important problem. Perhaps the most attractive feature of the book is the excellent balance between theory and applications and the large number of applications in such diverse areas as astrophysics, nuclear physics, atomic and molecular spectroscopy, solid-state physics, and quantum well structures.
The Bumpy Road
Author: Massimiliano Badino
Publisher: Springer
ISBN: 3319200313
Category : Science
Languages : en
Pages : 123
Book Description
This book examines the different areas of knowledge, traditions, and conceptual resources that contributed to the building of Max Planck’s theory of radiation. It presents an insightful comparative analysis that not only sheds light upon a fundamental chapter in the history of modern physics, but also enlarges our understanding of how theoreticians work. Coverage offers a deep investigation into the technical aspects behind the theory and extends in time the notion of quantum revolution. It also presents a full-fledged discussion of the combinatorial part of Planck’s theory and places emphasis on the epistemological role of mathematical practices. By painstakingly reconstructing both the electromagnetic and the combinatorial part of Planck’s black-body theory, the author shows how some apparently merely technical resources, such as the Fourier series, effectively contributed to shape the final form of Planck’s theory. For decades, historians have debated the conditions of possibility of Max Planck’s discovery as a paradigmatic example of scientific revolution. In particular, the use of combinatorics, which eventually paved the way for the introduction of the quantum hypothesis, has remained a puzzle for experts. This book presents a fresh perspective on this important debate that will appeal to historians and philosophers of science.
Publisher: Springer
ISBN: 3319200313
Category : Science
Languages : en
Pages : 123
Book Description
This book examines the different areas of knowledge, traditions, and conceptual resources that contributed to the building of Max Planck’s theory of radiation. It presents an insightful comparative analysis that not only sheds light upon a fundamental chapter in the history of modern physics, but also enlarges our understanding of how theoreticians work. Coverage offers a deep investigation into the technical aspects behind the theory and extends in time the notion of quantum revolution. It also presents a full-fledged discussion of the combinatorial part of Planck’s theory and places emphasis on the epistemological role of mathematical practices. By painstakingly reconstructing both the electromagnetic and the combinatorial part of Planck’s black-body theory, the author shows how some apparently merely technical resources, such as the Fourier series, effectively contributed to shape the final form of Planck’s theory. For decades, historians have debated the conditions of possibility of Max Planck’s discovery as a paradigmatic example of scientific revolution. In particular, the use of combinatorics, which eventually paved the way for the introduction of the quantum hypothesis, has remained a puzzle for experts. This book presents a fresh perspective on this important debate that will appeal to historians and philosophers of science.
Advanced Molecular Quantum Mechanics
Author: R. Moss
Publisher: Springer Science & Business Media
ISBN: 9400956886
Category : Science
Languages : en
Pages : 251
Book Description
This book is primarily intended for graduate chemists and chemical physicists. Indeed, it is based on a graduate course that I give in the Chemistry Depart ment of Southampton University. Nowadays undergraduate chemistry courses usually include an introduction to quantum mechanics with particular reference to molecular properties and there are a number of excellent textbooks aimed specifically at undergraduate chemists. In valence theory and molecular spectroscopy physical concepts are often encountered that are normally taken on trust. For example, electron spin and the anomalous magnetic moment of the electron are usually accepted as postulates, although they are well understood by physicists. In addition, the advent of new techniques has led to experimental situations that can only be accounted for adequately by relatively sophisticated physical theory. Relativis tic corrections to molecular orbital energies are needed to explain X-ray photo electron spectra, while the use oflasers can give rise to multiphoton transitions, which are not easy to understand using the classical theory of radiation. Of course, the relevant equations may be extracted from the literature, but, if the underlying physics is not understood, this is a practice that is at best dissatisfy ing and at worst dangerous. One instance where great care must be taken is in the use of spectroscopically determined parameters to test the accuracy of elec tronic wave functions.
Publisher: Springer Science & Business Media
ISBN: 9400956886
Category : Science
Languages : en
Pages : 251
Book Description
This book is primarily intended for graduate chemists and chemical physicists. Indeed, it is based on a graduate course that I give in the Chemistry Depart ment of Southampton University. Nowadays undergraduate chemistry courses usually include an introduction to quantum mechanics with particular reference to molecular properties and there are a number of excellent textbooks aimed specifically at undergraduate chemists. In valence theory and molecular spectroscopy physical concepts are often encountered that are normally taken on trust. For example, electron spin and the anomalous magnetic moment of the electron are usually accepted as postulates, although they are well understood by physicists. In addition, the advent of new techniques has led to experimental situations that can only be accounted for adequately by relatively sophisticated physical theory. Relativis tic corrections to molecular orbital energies are needed to explain X-ray photo electron spectra, while the use oflasers can give rise to multiphoton transitions, which are not easy to understand using the classical theory of radiation. Of course, the relevant equations may be extracted from the literature, but, if the underlying physics is not understood, this is a practice that is at best dissatisfy ing and at worst dangerous. One instance where great care must be taken is in the use of spectroscopically determined parameters to test the accuracy of elec tronic wave functions.
Galileo Unbound
Author: David D. Nolte
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 384
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Publisher: Oxford University Press
ISBN: 0192528505
Category : Science
Languages : en
Pages : 384
Book Description
Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
The Theory of Heat Radiation
Author: Max Planck
Publisher:
ISBN:
Category : Electric waves
Languages : en
Pages : 484
Book Description
Publisher:
ISBN:
Category : Electric waves
Languages : en
Pages : 484
Book Description
Black-Body Theory and the Quantum Discontinuity, 1894-1912
Author: Thomas S. Kuhn
Publisher: University of Chicago Press
ISBN: 0226458008
Category : Science
Languages : en
Pages : 400
Book Description
"A masterly assessment of the way the idea of quanta of radiation became part of 20th-century physics. . . . The book not only deals with a topic of importance and interest to all scientists, but is also a polished literary work, described (accurately) by one of its original reviewers as a scientific detective story."—John Gribbin, New Scientist "Every scientist should have this book."—Paul Davies, New Scientist
Publisher: University of Chicago Press
ISBN: 0226458008
Category : Science
Languages : en
Pages : 400
Book Description
"A masterly assessment of the way the idea of quanta of radiation became part of 20th-century physics. . . . The book not only deals with a topic of importance and interest to all scientists, but is also a polished literary work, described (accurately) by one of its original reviewers as a scientific detective story."—John Gribbin, New Scientist "Every scientist should have this book."—Paul Davies, New Scientist