Author: Rafiq Muhammad
Publisher: Rafiq Muhammad
ISBN: 9198900749
Category : Young Adult Nonfiction
Languages : en
Pages : 181
Book Description
Are you an aspiring data science student or early career researcher taking your first steps into data science? Are you overwhelmed and lost in the vast sea of information? This simplified data science guide is for you. This book provides a step-by-step approach to how data science projects can be conceptualized, designed, and developed in health care by aspiring data scientists. We will start on an educational journey that equips graduate students and early career researchers with hands-on knowledge and practical skills so they may fully realize the amazing potential of data science in healthcare. The book provides: step-by-step approach to designing and developing data science projects in healthcare easy-to-understand structure to facilitate the development of data science projects for beginners links to useful resources and tools (mostly free and open source) that help build and execute AI projects in healthcare links to free-to-use healthcare databases Data science case study examples that demonstrate how to build data science projects Whether you are a healthcare professional looking to enhance your skills or a data scientist seeking to work in the healthcare industry, "The Power of Prediction in Health Care" is an essential guide to unlocking the potential of data science in healthcare. With real-world examples and practical advice, this book will empower you to make data-driven decisions that improve patient outcomes and transform healthcare.
The Power of Prediction in Health Care: A Step-by-step Guide to Data Science in Health Care
Author: Rafiq Muhammad
Publisher: Rafiq Muhammad
ISBN: 9198900749
Category : Young Adult Nonfiction
Languages : en
Pages : 181
Book Description
Are you an aspiring data science student or early career researcher taking your first steps into data science? Are you overwhelmed and lost in the vast sea of information? This simplified data science guide is for you. This book provides a step-by-step approach to how data science projects can be conceptualized, designed, and developed in health care by aspiring data scientists. We will start on an educational journey that equips graduate students and early career researchers with hands-on knowledge and practical skills so they may fully realize the amazing potential of data science in healthcare. The book provides: step-by-step approach to designing and developing data science projects in healthcare easy-to-understand structure to facilitate the development of data science projects for beginners links to useful resources and tools (mostly free and open source) that help build and execute AI projects in healthcare links to free-to-use healthcare databases Data science case study examples that demonstrate how to build data science projects Whether you are a healthcare professional looking to enhance your skills or a data scientist seeking to work in the healthcare industry, "The Power of Prediction in Health Care" is an essential guide to unlocking the potential of data science in healthcare. With real-world examples and practical advice, this book will empower you to make data-driven decisions that improve patient outcomes and transform healthcare.
Publisher: Rafiq Muhammad
ISBN: 9198900749
Category : Young Adult Nonfiction
Languages : en
Pages : 181
Book Description
Are you an aspiring data science student or early career researcher taking your first steps into data science? Are you overwhelmed and lost in the vast sea of information? This simplified data science guide is for you. This book provides a step-by-step approach to how data science projects can be conceptualized, designed, and developed in health care by aspiring data scientists. We will start on an educational journey that equips graduate students and early career researchers with hands-on knowledge and practical skills so they may fully realize the amazing potential of data science in healthcare. The book provides: step-by-step approach to designing and developing data science projects in healthcare easy-to-understand structure to facilitate the development of data science projects for beginners links to useful resources and tools (mostly free and open source) that help build and execute AI projects in healthcare links to free-to-use healthcare databases Data science case study examples that demonstrate how to build data science projects Whether you are a healthcare professional looking to enhance your skills or a data scientist seeking to work in the healthcare industry, "The Power of Prediction in Health Care" is an essential guide to unlocking the potential of data science in healthcare. With real-world examples and practical advice, this book will empower you to make data-driven decisions that improve patient outcomes and transform healthcare.
Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
How Data Science Is Transforming Health Care
Author: Tim O'Reilly
Publisher: "O'Reilly Media, Inc."
ISBN: 1449344976
Category : Computers
Languages : en
Pages : 12
Book Description
In the early days of the 20th century, department store magnate JohnWanamaker famously said, "I know that half of my advertising doesn'twork. The problem is that I don't know which half." That remainedbasically true until Google transformed advertising with AdSense basedon new uses of data and analysis. The same might be said about healthcare and it's poised to go through a similar transformation as newtools, techniques, and data sources come on line. Soon we'll makepolicy and resource decisions based on much better understanding ofwhat leads to the best outcomes, and we'll make medical decisionsbased on a patient's specific biology. The result will be betterhealth at less cost. This paper explores how data analysis will help us structure thebusiness of health care more effectively around outcomes, and how itwill transform the practice of medicine by personalizing for eachspecific patient.
Publisher: "O'Reilly Media, Inc."
ISBN: 1449344976
Category : Computers
Languages : en
Pages : 12
Book Description
In the early days of the 20th century, department store magnate JohnWanamaker famously said, "I know that half of my advertising doesn'twork. The problem is that I don't know which half." That remainedbasically true until Google transformed advertising with AdSense basedon new uses of data and analysis. The same might be said about healthcare and it's poised to go through a similar transformation as newtools, techniques, and data sources come on line. Soon we'll makepolicy and resource decisions based on much better understanding ofwhat leads to the best outcomes, and we'll make medical decisionsbased on a patient's specific biology. The result will be betterhealth at less cost. This paper explores how data analysis will help us structure thebusiness of health care more effectively around outcomes, and how itwill transform the practice of medicine by personalizing for eachspecific patient.
Patient Safety: Delivering Cost-Contained, High Quality, Person-Centered, and Safe Healthcare
Author: Sandra C. Buttigieg
Publisher: Frontiers Media SA
ISBN: 2889639800
Category : Medical
Languages : en
Pages : 92
Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Publisher: Frontiers Media SA
ISBN: 2889639800
Category : Medical
Languages : en
Pages : 92
Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Healthcare Data Analytics
Author: Chandan K. Reddy
Publisher: CRC Press
ISBN: 148223212X
Category : Business & Economics
Languages : en
Pages : 756
Book Description
At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available
Publisher: CRC Press
ISBN: 148223212X
Category : Business & Economics
Languages : en
Pages : 756
Book Description
At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available
Practical Data Analytics for Innovation in Medicine
Author: Gary D. Miner
Publisher: Academic Press
ISBN: 0323952755
Category : Computers
Languages : en
Pages : 578
Book Description
Practical Data Analytics for Innovation in Medicine: Building Real Predictive and Prescriptive Models in Personalized Healthcare and Medical Research Using AI, ML, and Related Technologies, Second Edition discusses the needs of healthcare and medicine in the 21st century, explaining how data analytics play an important and revolutionary role. With healthcare effectiveness and economics facing growing challenges, there is a rapidly emerging movement to fortify medical treatment and administration by tapping the predictive power of big data, such as predictive analytics, which can bolster patient care, reduce costs, and deliver greater efficiencies across a wide range of operational functions. Sections bring a historical perspective, highlight the importance of using predictive analytics to help solve health crisis such as the COVID-19 pandemic, provide access to practical step-by-step tutorials and case studies online, and use exercises based on real-world examples of successful predictive and prescriptive tools and systems. The final part of the book focuses on specific technical operations related to quality, cost-effective medical and nursing care delivery and administration brought by practical predictive analytics. Brings a historical perspective in medical care to discuss both the current status of health care delivery worldwide and the importance of using modern predictive analytics to help solve the health care crisis Provides online tutorials on several predictive analytics systems to help readers apply their knowledge on today’s medical issues and basic research Teaches how to develop effective predictive analytic research and to create decisioning/prescriptive analytic systems to make medical decisions quicker and more accurate
Publisher: Academic Press
ISBN: 0323952755
Category : Computers
Languages : en
Pages : 578
Book Description
Practical Data Analytics for Innovation in Medicine: Building Real Predictive and Prescriptive Models in Personalized Healthcare and Medical Research Using AI, ML, and Related Technologies, Second Edition discusses the needs of healthcare and medicine in the 21st century, explaining how data analytics play an important and revolutionary role. With healthcare effectiveness and economics facing growing challenges, there is a rapidly emerging movement to fortify medical treatment and administration by tapping the predictive power of big data, such as predictive analytics, which can bolster patient care, reduce costs, and deliver greater efficiencies across a wide range of operational functions. Sections bring a historical perspective, highlight the importance of using predictive analytics to help solve health crisis such as the COVID-19 pandemic, provide access to practical step-by-step tutorials and case studies online, and use exercises based on real-world examples of successful predictive and prescriptive tools and systems. The final part of the book focuses on specific technical operations related to quality, cost-effective medical and nursing care delivery and administration brought by practical predictive analytics. Brings a historical perspective in medical care to discuss both the current status of health care delivery worldwide and the importance of using modern predictive analytics to help solve the health care crisis Provides online tutorials on several predictive analytics systems to help readers apply their knowledge on today’s medical issues and basic research Teaches how to develop effective predictive analytic research and to create decisioning/prescriptive analytic systems to make medical decisions quicker and more accurate
COVID-19: Integrating artificial intelligence, data science, mathematics, medicine and public health, epidemiology, neuroscience, and biomedical science in pandemic management
Author: Reza Lashgari
Publisher: Frontiers Media SA
ISBN: 2889766012
Category : Medical
Languages : en
Pages : 1029
Book Description
Publisher: Frontiers Media SA
ISBN: 2889766012
Category : Medical
Languages : en
Pages : 1029
Book Description
An Introductory Guide to EC Competition Law and Practice
Author: Valentine Korah
Publisher:
ISBN:
Category : Antitrust law
Languages : en
Pages : 2354
Book Description
Publisher:
ISBN:
Category : Antitrust law
Languages : en
Pages : 2354
Book Description
Artificial Intelligence in Medical Imaging
Author: Erik R. Ranschaert
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369
Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Publisher: Springer
ISBN: 3319948784
Category : Medical
Languages : en
Pages : 369
Book Description
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Healthcare Analytics Made Simple
Author: Vikas (Vik) Kumar
Publisher: Packt Publishing Ltd
ISBN: 1787283224
Category : Computers
Languages : en
Pages : 258
Book Description
Add a touch of data analytics to your healthcare systems and get insightful outcomes Key Features Perform healthcare analytics with Python and SQL Build predictive models on real healthcare data with pandas and scikit-learn Use analytics to improve healthcare performance Book Description In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples. What you will learn Gain valuable insight into healthcare incentives, finances, and legislation Discover the connection between machine learning and healthcare processes Use SQL and Python to analyze data Measure healthcare quality and provider performance Identify features and attributes to build successful healthcare models Build predictive models using real-world healthcare data Become an expert in predictive modeling with structured clinical data See what lies ahead for healthcare analytics Who this book is for Healthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare.
Publisher: Packt Publishing Ltd
ISBN: 1787283224
Category : Computers
Languages : en
Pages : 258
Book Description
Add a touch of data analytics to your healthcare systems and get insightful outcomes Key Features Perform healthcare analytics with Python and SQL Build predictive models on real healthcare data with pandas and scikit-learn Use analytics to improve healthcare performance Book Description In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples. What you will learn Gain valuable insight into healthcare incentives, finances, and legislation Discover the connection between machine learning and healthcare processes Use SQL and Python to analyze data Measure healthcare quality and provider performance Identify features and attributes to build successful healthcare models Build predictive models using real-world healthcare data Become an expert in predictive modeling with structured clinical data See what lies ahead for healthcare analytics Who this book is for Healthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare.