The Physics of Degradation in Engineered Materials and Devices

The Physics of Degradation in Engineered Materials and Devices PDF Author: Jonathan Swingler
Publisher: Momentum Press
ISBN: 1606504681
Category : Technology & Engineering
Languages : en
Pages : 200

Get Book Here

Book Description
Degradation is apparent in all things and is fundamental to both manufactured and natural objects. It is often described by the second law of thermodynamics, where entropy, a measure of disorder, tends to increase with time in a closed system. Things age! This concise reference work brings together experts and key players engaged in the physics of degradation to present the background science, current thinking and developments in understanding, and gives a detailed account of emerging issues across a selection of engineering applications. The work has been put together to equip the upper level undergraduate student, postgraduate student, as well as the professional engineer and scientist, in the importance of physics of degradation. The aim of The Physics of Degradation in Engineered Materials and Devices is to bridge the gap between published textbooks on the fundamental science of degradation phenomena and published research on the engineering science of actual fabricated materials and devices. A history of the observation and understanding of physics of degradation is presented and the fundamentals and principles of thermodynamics and entropy are extensively discussed. This is the focus of this book, with an extended chapter by Alec Feinberg on equilibrium thermodynamic damage and non-equilibrium thermodynamic damage. It concludes with two particular technologies to give examples of areas of application.

Reliability and Failure of Electronic Materials and Devices

Reliability and Failure of Electronic Materials and Devices PDF Author: Milton Ohring
Publisher: Academic Press
ISBN: 0080575528
Category : Technology & Engineering
Languages : en
Pages : 759

Get Book Here

Book Description
Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites

Reliability Physics and Engineering

Reliability Physics and Engineering PDF Author: J. W. McPherson
Publisher: Springer Science & Business Media
ISBN: 1441963480
Category : Technology & Engineering
Languages : en
Pages : 324

Get Book Here

Book Description
All engineers could bene?t from at least one course in reliability physics and engineering. It is very likely that, starting with your very ?rst engineering po- tion, you will be asked — how long is your newly developed device expected to last? This text was designed to help you to answer this fundamentally important question. All materials and devices are expected to degrade with time, so it is very natural to ask — how long will the product last? The evidence for material/device degradation is apparently everywhere in nature. A fresh coating of paint on a house will eventually crack and peel. Doors in a new home can become stuck due to the shifting of the foundation. The new ?nish on an automobile will oxidize with time. The tight tolerances associated with ?nely meshed gears will deteriorate with time. Critical parameters associated with hi- precision semiconductor devices (threshold voltages, drive currents, interconnect resistances, capacitor leakages, etc.) will degrade with time. In order to und- stand the lifetime of the material/device, it is important to understand the reliability physics (kinetics) for each of the potential failure mechanisms and then be able to develop the required reliability engineering methods that can be used to prevent, or at least minimize the occurrence of, device failure.

Reliability Physics and Engineering

Reliability Physics and Engineering PDF Author: J. W. McPherson
Publisher: Springer Science & Business Media
ISBN: 3319001221
Category : Technology & Engineering
Languages : en
Pages : 406

Get Book Here

Book Description
"Reliability Physics and Engineering" provides critically important information for designing and building reliable cost-effective products. The textbook contains numerous example problems with solutions. Included at the end of each chapter are exercise problems and answers. "Reliability Physics and Engineering" is a useful resource for students, engineers, and materials scientists.

Thermodynamic Degradation Science

Thermodynamic Degradation Science PDF Author: Alec Feinberg
Publisher:
ISBN: 9781655235634
Category :
Languages : en
Pages : 350

Get Book Here

Book Description
Thermodynamic degradation science is a new and exciting discipline. It contributes to both physics of failure and as a new area in thermodynamics. There are many different ways to approach the science of degradation. Since thermodynamics uses an energy perspective, it is a great way to analyze such problems. There is something in this book for everyone who is concerned with degradation issues. Even if you are just interested in reliability or accelerated testing, there is a lot of new and highly informative material. We also go beyond traditional physics of failure methods and develop conjugate work models and methods. It is important to have new tools. a conjugate work approach to solving physics of failure problems. We cover a number of original key topics in this book, including: -thermodynamic principles of degradation-predicting life using the free energy-conjugate work, entropy damage, and free energy degradation analysis;-physics of failure using conjugate work approach;-complex systems degradation analysis using noise analysis;-mesoscopic noise entropy measurement for disorder in operating systems;-human heart degradation noise measurements;-cumulative entropy damage, cyclic work, and fatigue analysis;-Miner's rule derivation for fatigue and Miner's rule for batteries;-engines and efficiency degradation;-aging laws, cumulative accelerated stress test (CAST) plans, and acceleration factors for: creep; wear; fatigue; thermal cycle; vibration (sine and random); temperature; humidity and temperature;-transistor aging laws (bipolar and FET models);-new accelerated test environmental profiling CAST planning method;-vibration cumulative damage (sine and random);-chemical corrosion and activations aging laws;-diffusion aging laws;-reliability statistics;-how aging laws affect reliability distributions;-human engine degradation;-human heart versus metal cyclic fatigue;-human growth and repair model;-negative entropy and spontaneous negative entropy; and-environmental degradation, climate change, and pollution.When we think of thermodynamic degradation, whether it be for complex systems, devices, or even human aging, we begin to realize that it is all about "order" being converted to "disorder" due to the natural spontaneous tendencies described by the Second law of thermodynamics to come to equilibrium with the neighboring environment. Although most people who study thermodynamics are familiar with its second law, not many think of it as a good explanation of why a product degrades over time. However, we can manipulate and rephrase it as follows. The second law in terms of system thermodynamic degradation: the spontaneous irreversible degradation processes that take place in a system interacting with its environment will do so in order to go towards thermodynamic equilibrium with its environment.We see that the science presents us with a gift, for its second law actually explains the aging processes. This is a second edition, prior to the first edition, a preview chapter was as an invited contributor to a book edited with Professor Swingler at Heriot-Watt University, Edinburgh, entitled The Physics of Degradation in Engineered Materials and Device. We see that this science is starting to catch on. This book presents the fundamentals and goes beyond including new ways to make measurements, and provides many examples so the reader will learn the value of how this science can be used. I believe this science will significantly expand soon and it is my hope that this book will provide the spark to inspire others. Thermodynamic degradation science offers new tools, new ways to solve physics of failure problems, and new ways to do prognostics and prevent failure.

Thermodynamic Degradation Science

Thermodynamic Degradation Science PDF Author: Alec Feinberg
Publisher: John Wiley & Sons
ISBN: 1119276276
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
Thermodynamic degradation science is a new and exciting discipline. This book merges the science of physics of failure with thermodynamics and shows how degradation modeling is improved and enhanced when using thermodynamic principles. The author also goes beyond the traditional physics of failure methods and highlights the importance of having new tools such as “Mesoscopic” noise degradation measurements for prognostics of complex systems, and a conjugate work approach to solving physics of failure problems with accelerated testing applications. Key features: • Demonstrates how the thermodynamics energy approach uncovers key degradation models and their application to accelerated testing. • Demonstrates how thermodynamic degradation models accounts for cumulative stress environments, effect statistical reliability distributions, and are key for reliability test planning. • Provides coverage of the four types of Physics of Failure processes describing aging: Thermal Activation Processes, Forced Aging, Diffusion, and complex combinations of these. • Coverage of numerous key topics including: aging laws; Cumulative Accelerated Stress Test (CAST) Plans; cumulative entropy fatigue damage; reliability statistics and environmental degradation and pollution. Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing, Fatigue and Reliability Applications is essential reading for reliability, cumulative fatigue, and physics of failure engineers as well as students on courses which include thermodynamic engineering and/or physics of failure coverage.

Reliability of Organic Compounds in Microelectronics and Optoelectronics

Reliability of Organic Compounds in Microelectronics and Optoelectronics PDF Author: Willem Dirk van Driel
Publisher: Springer Nature
ISBN: 3030815765
Category : Technology & Engineering
Languages : en
Pages : 552

Get Book Here

Book Description
This book aims to provide a comprehensive reference into the critical subject of failure and degradation in organic materials, used in optoelectronics and microelectronics systems and devices. Readers in different industrial sectors, including microelectronics, automotive, lighting, oil/gas, and petrochemical will benefit from this book. Several case studies and examples are discussed, which readers will find useful to assess and mitigate similar failure cases. More importantly, this book presents methodologies and useful approaches in analyzing a failure and in relating a failure to the reliability of materials and systems.

Electrical Degradation and Breakdown in Polymers

Electrical Degradation and Breakdown in Polymers PDF Author: Len A. Dissado
Publisher: IET
ISBN: 9780863411960
Category : Science
Languages : en
Pages : 630

Get Book Here

Book Description
The book is in five parts: Part I introduces the physical and chemical structure of polymers and their breakdown; Part II reviews electrical degradation in polymers, and Part III reviews conduction and deterministic breakdown in solids. Part IV discusses the stochastic nature of break-down from empirical and modelling viewpoints, and Part V indicates practical implications and strategies for engineers. Much of the discussion applies to non-crystalline materials generally.

Failure Analysis

Failure Analysis PDF Author: Marius Bazu
Publisher: John Wiley & Sons
ISBN: 1119990009
Category : Technology & Engineering
Languages : en
Pages : 372

Get Book Here

Book Description
Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

Materials and Reliability Handbook for Semiconductor Optical and Electron Devices PDF Author: Osamu Ueda
Publisher: Springer Science & Business Media
ISBN: 1461443369
Category : Technology & Engineering
Languages : en
Pages : 618

Get Book Here

Book Description
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and reliability, which allow accurate prediction of reliability as well as the design specifically for improved reliability. The Handbook emphasizes physical mechanisms rather than an electrical definition of reliability. Accelerated aging is useful only if the failure mechanism is known. The Handbook also focuses on voltage and current acceleration stress mechanisms.