Author: D.S. Chemla
Publisher: Elsevier
ISBN: 0323148158
Category : Science
Languages : en
Pages : 497
Book Description
Nonlinear Optical Properties of Organic Molecules and Crystals, Volume 1 discusses the nonlinear optical effects in organic molecules and crystals, providing a classical distinction between quadratic and cubic processes. This book begins with a general overview of the basic properties of organic matter, followed by a review on the benefits derived from quantum-chemistry-based models and growth and characterization of high quality, bulk organic crystals and waveguided structures. A case study focusing on a specific material, namely urea, which exemplifies a situation in which transparency in the UV region has been purposely traded for nonlinear efficiency is also deliberated. This text concludes with a description of a type of trade-off between the unpredictable orientation of molecules in crystalline media, polarity of liquid-crystalline structures, and dominant electronic contribution to the electro-optic effect. This publication is beneficial to solid-state physicists and chemists concerned with nonlinear optical properties of organic molecules and crystals.
Nonlinear Optical Properties of Organic Molecules and Crystals V1
The Optical Properties of Organic Compounds
Author: Alexander Newton Winchell
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
The Optical Properties of Organic Compounds
Author: Alexander Newton Winchell
Publisher:
ISBN:
Category : Chemistry, Organic
Languages : en
Pages : 530
Book Description
Publisher:
ISBN:
Category : Chemistry, Organic
Languages : en
Pages : 530
Book Description
Optoelectronic Properties of Inorganic Compounds
Author: D. Max Roundhill
Publisher: Springer Science & Business Media
ISBN: 1475761015
Category : Science
Languages : en
Pages : 422
Book Description
This book is intended to offer the reader a snapshot of the field of optoelectronic materials from the viewpoint of inorganic chemists. The field of inorganic chemistry is transforming from one focused on the synthesis of compounds having interesting coordination numbers, structures, and stereochemistries, to one focused on preparing compounds that have potentially useful practical applica tions. Two such applications are in the area of optics and electronics. These are fields where the use of inorganic materials has a long history. As the field of microelectronics develops the demands on the performance of such materials increases, and it becomes necessary to discover compounds that will meet these demands. The field of optoelectronics represents a merging of the two disciplines. Its emergence is a natural one because many of the applications involve both of these properties, and also because the electronic structure of a metal compound that confers novel optical properties is often one that also influences its electron transfer and conductivity characteristics. Two of the more important growth areas that have led to these developments are communications and medicine. Within the communications field there is the microelectronics that is involved in information storage and transmittal, some of which will be transferred into the optical regime. Within the medical field there are chemical probes that transmit analytical information from an in vivo environment. This information needs to be readily accessible from an external site, and then quickly converted into images or data that yield accurate and inexpensive diagnoses.
Publisher: Springer Science & Business Media
ISBN: 1475761015
Category : Science
Languages : en
Pages : 422
Book Description
This book is intended to offer the reader a snapshot of the field of optoelectronic materials from the viewpoint of inorganic chemists. The field of inorganic chemistry is transforming from one focused on the synthesis of compounds having interesting coordination numbers, structures, and stereochemistries, to one focused on preparing compounds that have potentially useful practical applica tions. Two such applications are in the area of optics and electronics. These are fields where the use of inorganic materials has a long history. As the field of microelectronics develops the demands on the performance of such materials increases, and it becomes necessary to discover compounds that will meet these demands. The field of optoelectronics represents a merging of the two disciplines. Its emergence is a natural one because many of the applications involve both of these properties, and also because the electronic structure of a metal compound that confers novel optical properties is often one that also influences its electron transfer and conductivity characteristics. Two of the more important growth areas that have led to these developments are communications and medicine. Within the communications field there is the microelectronics that is involved in information storage and transmittal, some of which will be transferred into the optical regime. Within the medical field there are chemical probes that transmit analytical information from an in vivo environment. This information needs to be readily accessible from an external site, and then quickly converted into images or data that yield accurate and inexpensive diagnoses.
Optical Properties And Spectroscopy Of Nanomaterials
Author: Jin Zhong Zhang
Publisher: World Scientific
ISBN: 981446936X
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Optical properties are among the most fascinating and useful properties of nanomaterials and have been extensively studied using a variety of optical spectroscopic techniques. A basic understanding of the optical properties and related spectroscopic techniques is essential for anyone who is interested in learning about nanomaterials of semiconductors, insulators or metal. This is partly because optical properties are intimately related to other properties and functionalities (e.g. electronic, magnetic, and thermal) that are of fundamental importance to many technological applications, such as energy conversion, chemical analysis, biomedicine, optoelectronics, communication, and radiation detection.Intentionally designed for upper-level undergraduate students and beginning graduate students with some basic knowledge of quantum mechanics, this book provides the first systematic coverage of optical properties and spectroscopic techniques of nanomaterials.
Publisher: World Scientific
ISBN: 981446936X
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
Optical properties are among the most fascinating and useful properties of nanomaterials and have been extensively studied using a variety of optical spectroscopic techniques. A basic understanding of the optical properties and related spectroscopic techniques is essential for anyone who is interested in learning about nanomaterials of semiconductors, insulators or metal. This is partly because optical properties are intimately related to other properties and functionalities (e.g. electronic, magnetic, and thermal) that are of fundamental importance to many technological applications, such as energy conversion, chemical analysis, biomedicine, optoelectronics, communication, and radiation detection.Intentionally designed for upper-level undergraduate students and beginning graduate students with some basic knowledge of quantum mechanics, this book provides the first systematic coverage of optical properties and spectroscopic techniques of nanomaterials.
Refractive Indices of Solids
Author: Stepan S. Batsanov
Publisher: Springer
ISBN: 9811007977
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
This book highlights the basics of crystal optics methods and refractive index (RI) measurement techniques in various solids, as well as their scientific and technological applications. In addition to new techniques for cases when traditional techniques are impractical, such as for highly refracting powders, anomalous dispersion of light in the studied solid, or for colloids, it also describes conventional methods of RI measurement.
Publisher: Springer
ISBN: 9811007977
Category : Technology & Engineering
Languages : en
Pages : 108
Book Description
This book highlights the basics of crystal optics methods and refractive index (RI) measurement techniques in various solids, as well as their scientific and technological applications. In addition to new techniques for cases when traditional techniques are impractical, such as for highly refracting powders, anomalous dispersion of light in the studied solid, or for colloids, it also describes conventional methods of RI measurement.
NBS Technical Note
Author:
Publisher:
ISBN:
Category : Physical instruments
Languages : en
Pages : 204
Book Description
Publisher:
ISBN:
Category : Physical instruments
Languages : en
Pages : 204
Book Description
NBS Special Publication
Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 416
Book Description
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 416
Book Description
Handbook of Organic Materials for Optical and (Opto)Electronic Devices
Author: Oksana Ostroverkhova
Publisher: Elsevier
ISBN: 0857098764
Category : Technology & Engineering
Languages : en
Pages : 832
Book Description
Small molecules and conjugated polymers, the two main types of organic materials used for optoelectronic and photonic devices, can be used in a number of applications including organic light-emitting diodes, photovoltaic devices, photorefractive devices and waveguides. Organic materials are attractive due to their low cost, the possibility of their deposition from solution onto large-area substrates, and the ability to tailor their properties. The Handbook of organic materials for optical and (opto)electronic devices provides an overview of the properties of organic optoelectronic and nonlinear optical materials, and explains how these materials can be used across a range of applications.Parts one and two explore the materials used for organic optoelectronics and nonlinear optics, their properties, and methods of their characterization illustrated by physical studies. Part three moves on to discuss the applications of optoelectronic and nonlinear optical organic materials in devices and includes chapters on organic solar cells, electronic memory devices, and electronic chemical sensors, electro-optic devices.The Handbook of organic materials for optical and (opto)electronic devices is a technical resource for physicists, chemists, electrical engineers and materials scientists involved in research and development of organic semiconductor and nonlinear optical materials and devices. - Comprehensively examines the properties of organic optoelectronic and nonlinear optical materials - Discusses their applications in different devices including solar cells, LEDs and electronic memory devices - An essential technical resource for physicists, chemists, electrical engineers and materials scientists
Publisher: Elsevier
ISBN: 0857098764
Category : Technology & Engineering
Languages : en
Pages : 832
Book Description
Small molecules and conjugated polymers, the two main types of organic materials used for optoelectronic and photonic devices, can be used in a number of applications including organic light-emitting diodes, photovoltaic devices, photorefractive devices and waveguides. Organic materials are attractive due to their low cost, the possibility of their deposition from solution onto large-area substrates, and the ability to tailor their properties. The Handbook of organic materials for optical and (opto)electronic devices provides an overview of the properties of organic optoelectronic and nonlinear optical materials, and explains how these materials can be used across a range of applications.Parts one and two explore the materials used for organic optoelectronics and nonlinear optics, their properties, and methods of their characterization illustrated by physical studies. Part three moves on to discuss the applications of optoelectronic and nonlinear optical organic materials in devices and includes chapters on organic solar cells, electronic memory devices, and electronic chemical sensors, electro-optic devices.The Handbook of organic materials for optical and (opto)electronic devices is a technical resource for physicists, chemists, electrical engineers and materials scientists involved in research and development of organic semiconductor and nonlinear optical materials and devices. - Comprehensively examines the properties of organic optoelectronic and nonlinear optical materials - Discusses their applications in different devices including solar cells, LEDs and electronic memory devices - An essential technical resource for physicists, chemists, electrical engineers and materials scientists
Leaf Optical Properties
Author: Stéphane Jacquemoud
Publisher: Cambridge University Press
ISBN: 1108481264
Category : Nature
Languages : en
Pages : 571
Book Description
Presents state-of-the-art research into leaf interactions with light, for scientists working in remote sensing, plant physiology, ecology and resource management.
Publisher: Cambridge University Press
ISBN: 1108481264
Category : Nature
Languages : en
Pages : 571
Book Description
Presents state-of-the-art research into leaf interactions with light, for scientists working in remote sensing, plant physiology, ecology and resource management.