Author: Kendall E. Atkinson
Publisher: Cambridge University Press
ISBN: 0521583918
Category : Mathematics
Languages : en
Pages : 572
Book Description
This book provides an extensive introduction to the numerical solution of a large class of integral equations.
The Numerical Solution of Integral Equations of the Second Kind
Author: Kendall E. Atkinson
Publisher: Cambridge University Press
ISBN: 0521583918
Category : Mathematics
Languages : en
Pages : 572
Book Description
This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Publisher: Cambridge University Press
ISBN: 0521583918
Category : Mathematics
Languages : en
Pages : 572
Book Description
This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Computational Methods for Integral Equations
Author: L. M. Delves
Publisher: CUP Archive
ISBN: 9780521357968
Category : Mathematics
Languages : en
Pages : 392
Book Description
This textbook provides a readable account of techniques for numerical solutions.
Publisher: CUP Archive
ISBN: 9780521357968
Category : Mathematics
Languages : en
Pages : 392
Book Description
This textbook provides a readable account of techniques for numerical solutions.
Integral Equations
Author: Wolfgang Hackbusch
Publisher: Springer Science & Business Media
ISBN: 9783764328719
Category : Mathematics
Languages : en
Pages : 384
Book Description
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Publisher: Springer Science & Business Media
ISBN: 9783764328719
Category : Mathematics
Languages : en
Pages : 384
Book Description
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Numerical Solution of Integral Equations
Author: Michael A. Golberg
Publisher: Springer Science & Business Media
ISBN: 1489925937
Category : Mathematics
Languages : en
Pages : 428
Book Description
In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.
Publisher: Springer Science & Business Media
ISBN: 1489925937
Category : Mathematics
Languages : en
Pages : 428
Book Description
In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.
Linear and Nonlinear Integral Equations
Author: Abdul-Majid Wazwaz
Publisher: Springer Science & Business Media
ISBN: 3642214495
Category : Mathematics
Languages : en
Pages : 639
Book Description
Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.
Publisher: Springer Science & Business Media
ISBN: 3642214495
Category : Mathematics
Languages : en
Pages : 639
Book Description
Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.
Analytical and Numerical Methods for Volterra Equations
Author: Peter Linz
Publisher: SIAM
ISBN: 9781611970852
Category : Mathematics
Languages : en
Pages : 240
Book Description
Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Publisher: SIAM
ISBN: 9781611970852
Category : Mathematics
Languages : en
Pages : 240
Book Description
Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
A First Course in Integral Equations
Author: Abdul-Majid Wazwaz
Publisher: World Scientific
ISBN: 9789810231019
Category : Mathematics
Languages : en
Pages : 228
Book Description
This book presents the subject of integral equations in an accessible manner for a variety of applications. Emphasis is placed on understanding the subject while avoiding the abstract and compact theorems. A distinctive feature of the book is that it introduces the recent powerful and reliable developments in this field, which are not covered in traditional texts. The newly developed decomposition method, the series solution method and the direct computation method are thoroughly implemented, which allows the topic to be far more accessible. The book also includes some of the traditional techniques for comparison.Using the newly developed methods, the author successfully handles Fredholm and Volterra integral equations, singular integral equations, integro-differential equations and nonlinear integral equations, with promising results for linear and nonlinear models. Many examples are given to introduce the material in a clear and thorough fashion. In addition, many exercises are provided to build confidence, ease and skill in using the new methods.This book may be used as a text for advanced undergraduates and graduate students in mathematics and scientific areas, and as a work of reference for research study of differential equations and numerical analysis.
Publisher: World Scientific
ISBN: 9789810231019
Category : Mathematics
Languages : en
Pages : 228
Book Description
This book presents the subject of integral equations in an accessible manner for a variety of applications. Emphasis is placed on understanding the subject while avoiding the abstract and compact theorems. A distinctive feature of the book is that it introduces the recent powerful and reliable developments in this field, which are not covered in traditional texts. The newly developed decomposition method, the series solution method and the direct computation method are thoroughly implemented, which allows the topic to be far more accessible. The book also includes some of the traditional techniques for comparison.Using the newly developed methods, the author successfully handles Fredholm and Volterra integral equations, singular integral equations, integro-differential equations and nonlinear integral equations, with promising results for linear and nonlinear models. Many examples are given to introduce the material in a clear and thorough fashion. In addition, many exercises are provided to build confidence, ease and skill in using the new methods.This book may be used as a text for advanced undergraduates and graduate students in mathematics and scientific areas, and as a work of reference for research study of differential equations and numerical analysis.
Handbook of Integral Equations
Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 0203881052
Category : Mathematics
Languages : en
Pages : 1143
Book Description
Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa
Publisher: CRC Press
ISBN: 0203881052
Category : Mathematics
Languages : en
Pages : 1143
Book Description
Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa
Integral Equations Of First Kind
Author: A V Bitsadze
Publisher: World Scientific
ISBN: 9814500429
Category : Science
Languages : en
Pages : 274
Book Description
This book studies classes of linear integral equations of the first kind most often met in applications. Since the general theory of integral equations of the first kind has not been formed yet, the book considers the equations whose solutions either are estimated in quadratures or can be reduced to well-investigated classes of integral equations of the second kind.In this book the theory of integral equations of the first kind is constructed by using the methods of the theory of functions both of real and complex variables. Special attention is paid to the inversion formulas of model equations most often met in physics, mechanics, astrophysics, chemical physics etc. The general theory of linear equations including the Fredholm, the Noether, the Hausdorff theorems, the Hilbert-Schmidt theorem, the Picard theorem and the application of this theory to the solution of boundary problems are given in this book. The book studies the equations of the first kind with the Schwarz Kernel, the Poisson and the Neumann kernels; the Volterra integral equations of the first kind, the Abel equations and some generalizations, one-dimensional and many-dimensional analogues of the Cauchy type integral and some of their applications.
Publisher: World Scientific
ISBN: 9814500429
Category : Science
Languages : en
Pages : 274
Book Description
This book studies classes of linear integral equations of the first kind most often met in applications. Since the general theory of integral equations of the first kind has not been formed yet, the book considers the equations whose solutions either are estimated in quadratures or can be reduced to well-investigated classes of integral equations of the second kind.In this book the theory of integral equations of the first kind is constructed by using the methods of the theory of functions both of real and complex variables. Special attention is paid to the inversion formulas of model equations most often met in physics, mechanics, astrophysics, chemical physics etc. The general theory of linear equations including the Fredholm, the Noether, the Hausdorff theorems, the Hilbert-Schmidt theorem, the Picard theorem and the application of this theory to the solution of boundary problems are given in this book. The book studies the equations of the first kind with the Schwarz Kernel, the Poisson and the Neumann kernels; the Volterra integral equations of the first kind, the Abel equations and some generalizations, one-dimensional and many-dimensional analogues of the Cauchy type integral and some of their applications.
Computational Methods for Linear Integral Equations
Author: Prem Kythe
Publisher: Springer Science & Business Media
ISBN: 1461201012
Category : Mathematics
Languages : en
Pages : 525
Book Description
This book presents numerical methods and computational aspects for linear integral equations. Such equations occur in various areas of applied mathematics, physics, and engineering. The material covered in this book, though not exhaustive, offers useful techniques for solving a variety of problems. Historical information cover ing the nineteenth and twentieth centuries is available in fragments in Kantorovich and Krylov (1958), Anselone (1964), Mikhlin (1967), Lonseth (1977), Atkinson (1976), Baker (1978), Kondo (1991), and Brunner (1997). Integral equations are encountered in a variety of applications in many fields including continuum mechanics, potential theory, geophysics, electricity and mag netism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control sys tems, communication theory, mathematical economics, population genetics, queue ing theory, and medicine. Most of the boundary value problems involving differ ential equations can be converted into problems in integral equations, but there are certain problems which can be formulated only in terms of integral equations. A computational approach to the solution of integral equations is, therefore, an essential branch of scientific inquiry.
Publisher: Springer Science & Business Media
ISBN: 1461201012
Category : Mathematics
Languages : en
Pages : 525
Book Description
This book presents numerical methods and computational aspects for linear integral equations. Such equations occur in various areas of applied mathematics, physics, and engineering. The material covered in this book, though not exhaustive, offers useful techniques for solving a variety of problems. Historical information cover ing the nineteenth and twentieth centuries is available in fragments in Kantorovich and Krylov (1958), Anselone (1964), Mikhlin (1967), Lonseth (1977), Atkinson (1976), Baker (1978), Kondo (1991), and Brunner (1997). Integral equations are encountered in a variety of applications in many fields including continuum mechanics, potential theory, geophysics, electricity and mag netism, kinetic theory of gases, hereditary phenomena in physics and biology, renewal theory, quantum mechanics, radiation, optimization, optimal control sys tems, communication theory, mathematical economics, population genetics, queue ing theory, and medicine. Most of the boundary value problems involving differ ential equations can be converted into problems in integral equations, but there are certain problems which can be formulated only in terms of integral equations. A computational approach to the solution of integral equations is, therefore, an essential branch of scientific inquiry.