Moebius Noodles

Moebius Noodles PDF Author: Yelena McManaman
Publisher: Natural Math
ISBN: 9780977693955
Category : Education
Languages : en
Pages : 96

Get Book Here

Book Description
"How do you want your child to feel about math? Confident, curious and deeply connected? Then Moebius Noodles is for you. It offers advanced math activities to fit your child's personality, interests, and needs. Can you enjoy playful math with your child? Yes! The book shows you how to go beyond your own math limits and anxieties to do so. It opens the door to a supportive online community that will answer your questions and give you ideas along the way. Learn how you can create an immersive rich math environment for your baby. Find out ways to help your toddler discover deep math in everyday experiences. Play games that will develop your child's sense of happy familiarity with mathematics. A five-year-old once asked us, "Who makes math?" and jumped for joy at the answer, "You!" Moebius Noodles helps you take small, immediate steps toward the sense of mathematical power. You and your child can make math your own. Together, make your own math!"--Publisher's website.

Moebius Noodles

Moebius Noodles PDF Author: Yelena McManaman
Publisher: Natural Math
ISBN: 9780977693955
Category : Education
Languages : en
Pages : 96

Get Book Here

Book Description
"How do you want your child to feel about math? Confident, curious and deeply connected? Then Moebius Noodles is for you. It offers advanced math activities to fit your child's personality, interests, and needs. Can you enjoy playful math with your child? Yes! The book shows you how to go beyond your own math limits and anxieties to do so. It opens the door to a supportive online community that will answer your questions and give you ideas along the way. Learn how you can create an immersive rich math environment for your baby. Find out ways to help your toddler discover deep math in everyday experiences. Play games that will develop your child's sense of happy familiarity with mathematics. A five-year-old once asked us, "Who makes math?" and jumped for joy at the answer, "You!" Moebius Noodles helps you take small, immediate steps toward the sense of mathematical power. You and your child can make math your own. Together, make your own math!"--Publisher's website.

Foundations of Analysis

Foundations of Analysis PDF Author: Edmund Landau
Publisher:
ISBN: 9781950217083
Category :
Languages : en
Pages : 142

Get Book Here

Book Description
Natural numbers, zero, negative integers, rational numbers, irrational numbers, real numbers, complex numbers, . . ., and, what are numbers? The most accurate mathematical answer to the question is given in this book.

Number Systems and the Foundations of Analysis

Number Systems and the Foundations of Analysis PDF Author: Elliott Mendelson
Publisher: Dover Books on Mathematics
ISBN: 9780486457925
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
Geared toward undergraduate and beginning graduate students, this study explores natural numbers, integers, rational numbers, real numbers, and complex numbers. Numerous exercises and appendixes supplement the text. 1973 edition.

Metamathematics of First-Order Arithmetic

Metamathematics of First-Order Arithmetic PDF Author: Petr Hájek
Publisher: Cambridge University Press
ISBN: 1107168414
Category : Mathematics
Languages : en
Pages : 475

Get Book Here

Book Description
A much-needed monograph on the metamathematics of first-order arithmetic, paying particular attention to fragments of Peano arithmetic.

A First Course in Real Analysis

A First Course in Real Analysis PDF Author: M.H. Protter
Publisher: Springer Science & Business Media
ISBN: 1461599903
Category : Mathematics
Languages : en
Pages : 520

Get Book Here

Book Description
The first course in analysis which follows elementary calculus is a critical one for students who are seriously interested in mathematics. Traditional advanced calculus was precisely what its name indicates-a course with topics in calculus emphasizing problem solving rather than theory. As a result students were often given a misleading impression of what mathematics is all about; on the other hand the current approach, with its emphasis on theory, gives the student insight in the fundamentals of analysis. In A First Course in Real Analysis we present a theoretical basis of analysis which is suitable for students who have just completed a course in elementary calculus. Since the sixteen chapters contain more than enough analysis for a one year course, the instructor teaching a one or two quarter or a one semester junior level course should easily find those topics which he or she thinks students should have. The first Chapter, on the real number system, serves two purposes. Because most students entering this course have had no experience in devising proofs of theorems, it provides an opportunity to develop facility in theorem proving. Although the elementary processes of numbers are familiar to most students, greater understanding of these processes is acquired by those who work the problems in Chapter 1. As a second purpose, we provide, for those instructors who wish to give a comprehen sive course in analysis, a fairly complete treatment of the real number system including a section on mathematical induction.

Mathematics in Nature

Mathematics in Nature PDF Author: John Adam
Publisher: Princeton University Press
ISBN: 1400841011
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
From rainbows, river meanders, and shadows to spider webs, honeycombs, and the markings on animal coats, the visible world is full of patterns that can be described mathematically. Examining such readily observable phenomena, this book introduces readers to the beauty of nature as revealed by mathematics and the beauty of mathematics as revealed in nature. Generously illustrated, written in an informal style, and replete with examples from everyday life, Mathematics in Nature is an excellent and undaunting introduction to the ideas and methods of mathematical modeling. It illustrates how mathematics can be used to formulate and solve puzzles observed in nature and to interpret the solutions. In the process, it teaches such topics as the art of estimation and the effects of scale, particularly what happens as things get bigger. Readers will develop an understanding of the symbiosis that exists between basic scientific principles and their mathematical expressions as well as a deeper appreciation for such natural phenomena as cloud formations, halos and glories, tree heights and leaf patterns, butterfly and moth wings, and even puddles and mud cracks. Developed out of a university course, this book makes an ideal supplemental text for courses in applied mathematics and mathematical modeling. It will also appeal to mathematics educators and enthusiasts at all levels, and is designed so that it can be dipped into at leisure.

Mathematics for Natural Scientists

Mathematics for Natural Scientists PDF Author: Lev Kantorovich
Publisher: Springer
ISBN: 149392785X
Category : Science
Languages : en
Pages : 536

Get Book Here

Book Description
This book covers a course of mathematics designed primarily for physics and engineering students. It includes all the essential material on mathematical methods, presented in a form accessible to physics students, avoiding precise mathematical jargon and proofs which are comprehensible only to mathematicians. Instead, all proofs are given in a form that is clear and convincing enough for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each section of the book. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.

A Course in Arithmetic

A Course in Arithmetic PDF Author: J-P. Serre
Publisher: Springer Science & Business Media
ISBN: 1468498843
Category : Mathematics
Languages : en
Pages : 126

Get Book Here

Book Description
This book is divided into two parts. The first one is purely algebraic. Its objective is the classification of quadratic forms over the field of rational numbers (Hasse-Minkowski theorem). It is achieved in Chapter IV. The first three chapters contain some preliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols. Chapter V applies the preceding results to integral quadratic forms of discriminant ± I. These forms occur in various questions: modular functions, differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor phic functions). Chapter VI gives the proof of the "theorem on arithmetic progressions" due to Dirichlet; this theorem is used at a critical point in the first part (Chapter Ill, no. 2.2). Chapter VII deals with modular forms, and in particular, with theta functions. Some of the quadratic forms of Chapter V reappear here. The two parts correspond to lectures given in 1962 and 1964 to second year students at the Ecole Normale Superieure. A redaction of these lectures in the form of duplicated notes, was made by J.-J. Sansuc (Chapters I-IV) and J.-P. Ramis and G. Ruget (Chapters VI-VII). They were very useful to me; I extend here my gratitude to their authors.

Camp Logic

Camp Logic PDF Author: Mark Saul
Publisher: Natural Math
ISBN: 9780977693962
Category : Juvenile Nonfiction
Languages : en
Pages : 0

Get Book Here

Book Description
This book offers a deeper insight into what mathematics is, tapping every child's intuitive ideas of logic and natural enjoyment of games. Simple-looking games and puzzles quickly lead to deeper insights, which will eventually connect with significant formal mathematical ideas as the child grows. This book is addressed to leaders of math circles or enrichment programs, but its activities can fit into regular math classes, homeschooling venues, or situations in which students are learning mathematics on their own. The mathematics contained in the activities can be enjoyed on many levels.

From Natural Numbers to Quaternions

From Natural Numbers to Quaternions PDF Author: Jürg Kramer
Publisher: Springer
ISBN: 3319694294
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
This textbook offers an invitation to modern algebra through number systems of increasing complexity, beginning with the natural numbers and culminating with Hamilton's quaternions. Along the way, the authors carefully develop the necessary concepts and methods from abstract algebra: monoids, groups, rings, fields, and skew fields. Each chapter ends with an appendix discussing related topics from algebra and number theory, including recent developments reflecting the relevance of the material to current research. The present volume is intended for undergraduate courses in abstract algebra or elementary number theory. The inclusion of exercises with solutions also makes it suitable for self-study and accessible to anyone with an interest in modern algebra and number theory.