Author: Paul Lockhart
Publisher: Harvard University Press
ISBN: 0674071174
Category : Mathematics
Languages : en
Pages : 264
Book Description
For seven years, Paul Lockhart’s A Mathematician’s Lament enjoyed a samizdat-style popularity in the mathematics underground, before demand prompted its 2009 publication to even wider applause and debate. An impassioned critique of K–12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. Measurement offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
Measurement
Author: Paul Lockhart
Publisher: Harvard University Press
ISBN: 0674071174
Category : Mathematics
Languages : en
Pages : 264
Book Description
For seven years, Paul Lockhart’s A Mathematician’s Lament enjoyed a samizdat-style popularity in the mathematics underground, before demand prompted its 2009 publication to even wider applause and debate. An impassioned critique of K–12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. Measurement offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
Publisher: Harvard University Press
ISBN: 0674071174
Category : Mathematics
Languages : en
Pages : 264
Book Description
For seven years, Paul Lockhart’s A Mathematician’s Lament enjoyed a samizdat-style popularity in the mathematics underground, before demand prompted its 2009 publication to even wider applause and debate. An impassioned critique of K–12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. Measurement offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
An Introduction to Measure Theory
Author: Terence Tao
Publisher: American Mathematical Soc.
ISBN: 1470466406
Category : Education
Languages : en
Pages : 206
Book Description
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Publisher: American Mathematical Soc.
ISBN: 1470466406
Category : Education
Languages : en
Pages : 206
Book Description
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Measuring Penny
Author:
Publisher: Macmillan
ISBN: 0805065725
Category : Juvenile Nonfiction
Languages : en
Pages : 36
Book Description
Lisa's homework assignment is to measure something. The fun begins when she decides to measure her dog, Penny.
Publisher: Macmillan
ISBN: 0805065725
Category : Juvenile Nonfiction
Languages : en
Pages : 36
Book Description
Lisa's homework assignment is to measure something. The fun begins when she decides to measure her dog, Penny.
Measure, Integration & Real Analysis
Author: Sheldon Axler
Publisher: Springer Nature
ISBN: 3030331431
Category : Mathematics
Languages : en
Pages : 430
Book Description
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Publisher: Springer Nature
ISBN: 3030331431
Category : Mathematics
Languages : en
Pages : 430
Book Description
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
The Mathematics of Data
Author: Michael W. Mahoney
Publisher: American Mathematical Soc.
ISBN: 1470435756
Category : Computers
Languages : en
Pages : 340
Book Description
Nothing provided
Publisher: American Mathematical Soc.
ISBN: 1470435756
Category : Computers
Languages : en
Pages : 340
Book Description
Nothing provided
Measure and Integral
Author: Richard Wheeden
Publisher: CRC Press
ISBN: 1482229536
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.
Publisher: CRC Press
ISBN: 1482229536
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.
Quite Right
Author: Norman Biggs
Publisher: Oxford University Press
ISBN: 0191067601
Category : Mathematics
Languages : en
Pages : 185
Book Description
Mathematics did not spring spontaneously into life, with rules set in stone for all time. Its story is closely linked with the problems of measurement and money that have often driven its progress. Quite Right explains how mathematical ideas have gradually emerged since prehistoric times, so that they pervade almost every aspect of life in the twenty-first century. Many histories of mathematics focus on the activities of those for whom mathematics itself was the motivation. Professor Biggs adopts a wider viewpoint. Making use of new discoveries of artefacts and documents, he explains the part that mathematics has played in the human story, and what that tells us about the nature of mathematics. The story reveals the power and beauty of mathematical concepts, which often belie their utilitarian origins. The twin paradigms of logical justification and algorithmic calculation recur throughout the book. No other book tells the story of mathematics, measurement, and money in this way. Includes secontions on: — The origins of calculation in ancient and medieval times — How mathematics provides answers that are right, and what that means — The impact of trade and the use of money on the development of mathematical algorithms — The use of mathematics for secure communications — How money and information are linked in our electronic world Quite Right is a fascinating story, suitable for anyone interested in the mathematical foundations of the world we live in. Norman Biggs is Professor (Emeritus) of Mathematics at the London School of Economics. He is the author of 12 books, including a perennial best-selling book Discrete Mathematics (Oxford University Press). He has a special interest in measurement and was Chair of the International Society of Weights and Scales Collectors from 2009-14. He served as a Vice President of the British Society for the History of Mathematics in 2014 and is an active member of the British Numismatic Society. 'This is a history of mathematics book with a difference. Instead of the usual chronological sequence of events, presented with mathematical hindsight (interpreting mathematical achievements from a modern point of view), this book tries to see things more from the context of the time - presenting the topics thematically rather than strictly chronologically, and including results and problems only when they fit into the themes ... the level of exposition is first-rate, with a far greater fluency than most mathematical writers can attain ... I am very happy to recommend it wholeheartedly.' Professor Robin Wilson, University of Oxford
Publisher: Oxford University Press
ISBN: 0191067601
Category : Mathematics
Languages : en
Pages : 185
Book Description
Mathematics did not spring spontaneously into life, with rules set in stone for all time. Its story is closely linked with the problems of measurement and money that have often driven its progress. Quite Right explains how mathematical ideas have gradually emerged since prehistoric times, so that they pervade almost every aspect of life in the twenty-first century. Many histories of mathematics focus on the activities of those for whom mathematics itself was the motivation. Professor Biggs adopts a wider viewpoint. Making use of new discoveries of artefacts and documents, he explains the part that mathematics has played in the human story, and what that tells us about the nature of mathematics. The story reveals the power and beauty of mathematical concepts, which often belie their utilitarian origins. The twin paradigms of logical justification and algorithmic calculation recur throughout the book. No other book tells the story of mathematics, measurement, and money in this way. Includes secontions on: — The origins of calculation in ancient and medieval times — How mathematics provides answers that are right, and what that means — The impact of trade and the use of money on the development of mathematical algorithms — The use of mathematics for secure communications — How money and information are linked in our electronic world Quite Right is a fascinating story, suitable for anyone interested in the mathematical foundations of the world we live in. Norman Biggs is Professor (Emeritus) of Mathematics at the London School of Economics. He is the author of 12 books, including a perennial best-selling book Discrete Mathematics (Oxford University Press). He has a special interest in measurement and was Chair of the International Society of Weights and Scales Collectors from 2009-14. He served as a Vice President of the British Society for the History of Mathematics in 2014 and is an active member of the British Numismatic Society. 'This is a history of mathematics book with a difference. Instead of the usual chronological sequence of events, presented with mathematical hindsight (interpreting mathematical achievements from a modern point of view), this book tries to see things more from the context of the time - presenting the topics thematically rather than strictly chronologically, and including results and problems only when they fit into the themes ... the level of exposition is first-rate, with a far greater fluency than most mathematical writers can attain ... I am very happy to recommend it wholeheartedly.' Professor Robin Wilson, University of Oxford
Integration, Measure and Probability
Author: H. R. Pitt
Publisher: Courier Corporation
ISBN: 0486488152
Category : Mathematics
Languages : en
Pages : 130
Book Description
Introductory treatment develops the theory of integration in a general context, making it applicable to other branches of analysis. More specialized topics include convergence theorems and random sequences and functions. 1963 edition.
Publisher: Courier Corporation
ISBN: 0486488152
Category : Mathematics
Languages : en
Pages : 130
Book Description
Introductory treatment develops the theory of integration in a general context, making it applicable to other branches of analysis. More specialized topics include convergence theorems and random sequences and functions. 1963 edition.
The Mathematics of Measurement
Author: John J. Roche
Publisher: Springer Science & Business Media
ISBN: 9780387915814
Category : Mathematics
Languages : en
Pages : 364
Book Description
The Mathematics of Measurement is a historical survey of the introduction of mathematics to physics and of the branches of mathematics that were developed specifically for handling measurements, including dimensional analysis, error analysis, and the calculus of quantities.
Publisher: Springer Science & Business Media
ISBN: 9780387915814
Category : Mathematics
Languages : en
Pages : 364
Book Description
The Mathematics of Measurement is a historical survey of the introduction of mathematics to physics and of the branches of mathematics that were developed specifically for handling measurements, including dimensional analysis, error analysis, and the calculus of quantities.
Navigating Through Measurement in Grades 3-5
Author: Nancy Canavan Anderson
Publisher: National Council of Teachers of English
ISBN:
Category : Education
Languages : en
Pages : 160
Book Description
Follows students' natural progression from measuring with informal or non-standard units to using standard units to measure such attributes as length, weight, angle and temperature. Activities extend students' learning to the measurement of two-and three-dimensional objects. Students work in a variety of lively real-world contexts, gathering measurement benchmarks in a classroom scavenger hunt and investigating the area of a rectangle while acting as owners of a sticker factory, for example.
Publisher: National Council of Teachers of English
ISBN:
Category : Education
Languages : en
Pages : 160
Book Description
Follows students' natural progression from measuring with informal or non-standard units to using standard units to measure such attributes as length, weight, angle and temperature. Activities extend students' learning to the measurement of two-and three-dimensional objects. Students work in a variety of lively real-world contexts, gathering measurement benchmarks in a classroom scavenger hunt and investigating the area of a rectangle while acting as owners of a sticker factory, for example.