Author: Olʹga Aleksandrovna Ladyzhenskai͡a
Publisher: Routledge
ISBN:
Category : Mathematics
Languages : en
Pages : 208
Book Description
The Mathematical Theory of Viscous Incompressible Flow
The Mathematical Theory of Viscous Incompressible Flow
Author: O. A. Ladyženskaja
Publisher:
ISBN:
Category :
Languages : en
Pages : 184
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 184
Book Description
Mathematical Theory of Compressible Viscous Fluids
Author: Eduard Feireisl
Publisher: Birkhäuser
ISBN: 3319448358
Category : Mathematics
Languages : en
Pages : 189
Book Description
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematics. It will help graduate students and researchers to not only better understand problems in mathematical compressible fluid mechanics but also to learn something from the field of mathematical and numerical analysis and to see the connections between the two worlds. Potential readers should possess a good command of the basic tools of functional analysis and partial differential equations including the function spaces of Sobolev type.
Publisher: Birkhäuser
ISBN: 3319448358
Category : Mathematics
Languages : en
Pages : 189
Book Description
This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematics. It will help graduate students and researchers to not only better understand problems in mathematical compressible fluid mechanics but also to learn something from the field of mathematical and numerical analysis and to see the connections between the two worlds. Potential readers should possess a good command of the basic tools of functional analysis and partial differential equations including the function spaces of Sobolev type.
Finite Element Methods for Viscous Incompressible Flows
Author: Max D. Gunzburger
Publisher: Elsevier
ISBN: 0323139825
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Finite Element Methods for Viscous Incompressible Flows examines mathematical aspects of finite element methods for the approximate solution of incompressible flow problems. The principal goal is to present some of the important mathematical results that are relevant to practical computations. In so doing, useful algorithms are also discussed. Although rigorous results are stated, no detailed proofs are supplied; rather, the intention is to present these results so that they can serve as a guide for the selection and, in certain respects, the implementation of algorithms.
Publisher: Elsevier
ISBN: 0323139825
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Finite Element Methods for Viscous Incompressible Flows examines mathematical aspects of finite element methods for the approximate solution of incompressible flow problems. The principal goal is to present some of the important mathematical results that are relevant to practical computations. In so doing, useful algorithms are also discussed. Although rigorous results are stated, no detailed proofs are supplied; rather, the intention is to present these results so that they can serve as a guide for the selection and, in certain respects, the implementation of algorithms.
Introduction to the Numerical Analysis of Incompressible Viscous Flows
Author: William Layton
Publisher: SIAM
ISBN: 0898718902
Category : Mathematics
Languages : en
Pages : 220
Book Description
Introduction to the Numerical Analysis of Incompressible Viscous Flows treats the numerical analysis of finite element computational fluid dynamics. Assuming minimal background, the text covers finite element methods; the derivation, behavior, analysis, and numerical analysis of Navier-Stokes equations; and turbulence and turbulence models used in simulations. Each chapter on theory is followed by a numerical analysis chapter that expands on the theory. This book provides the foundation for understanding the interconnection of the physics, mathematics, and numerics of the incompressible case, which is essential for progressing to the more complex flows not addressed in this book (e.g., viscoelasticity, plasmas, compressible flows, coating flows, flows of mixtures of fluids, and bubbly flows). With mathematical rigor and physical clarity, the book progresses from the mathematical preliminaries of energy and stress to finite element computational fluid dynamics in a format manageable in one semester. Audience: this unified treatment of fluid mechanics, analysis, and numerical analysis is intended for graduate students in mathematics, engineering, physics, and the sciences who are interested in understanding the foundations of methods commonly used for flow simulations.
Publisher: SIAM
ISBN: 0898718902
Category : Mathematics
Languages : en
Pages : 220
Book Description
Introduction to the Numerical Analysis of Incompressible Viscous Flows treats the numerical analysis of finite element computational fluid dynamics. Assuming minimal background, the text covers finite element methods; the derivation, behavior, analysis, and numerical analysis of Navier-Stokes equations; and turbulence and turbulence models used in simulations. Each chapter on theory is followed by a numerical analysis chapter that expands on the theory. This book provides the foundation for understanding the interconnection of the physics, mathematics, and numerics of the incompressible case, which is essential for progressing to the more complex flows not addressed in this book (e.g., viscoelasticity, plasmas, compressible flows, coating flows, flows of mixtures of fluids, and bubbly flows). With mathematical rigor and physical clarity, the book progresses from the mathematical preliminaries of energy and stress to finite element computational fluid dynamics in a format manageable in one semester. Audience: this unified treatment of fluid mechanics, analysis, and numerical analysis is intended for graduate students in mathematics, engineering, physics, and the sciences who are interested in understanding the foundations of methods commonly used for flow simulations.
Mathematical Theory of Incompressible Nonviscous Fluids
Author: Carlo Marchioro
Publisher: Springer Science & Business Media
ISBN: 1461242843
Category : Mathematics
Languages : en
Pages : 295
Book Description
Fluid dynamics is an ancient science incredibly alive today. Modern technol ogy and new needs require a deeper knowledge of the behavior of real fluids, and new discoveries or steps forward pose, quite often, challenging and diffi cult new mathematical {::oblems. In this framework, a special role is played by incompressible nonviscous (sometimes called perfect) flows. This is a mathematical model consisting essentially of an evolution equation (the Euler equation) for the velocity field of fluids. Such an equation, which is nothing other than the Newton laws plus some additional structural hypo theses, was discovered by Euler in 1755, and although it is more than two centuries old, many fundamental questions concerning its solutions are still open. In particular, it is not known whether the solutions, for reasonably general initial conditions, develop singularities in a finite time, and very little is known about the long-term behavior of smooth solutions. These and other basic problems are still open, and this is one of the reasons why the mathe matical theory of perfect flows is far from being completed. Incompressible flows have been attached, by many distinguished mathe maticians, with a large variety of mathematical techniques so that, today, this field constitutes a very rich and stimulating part of applied mathematics.
Publisher: Springer Science & Business Media
ISBN: 1461242843
Category : Mathematics
Languages : en
Pages : 295
Book Description
Fluid dynamics is an ancient science incredibly alive today. Modern technol ogy and new needs require a deeper knowledge of the behavior of real fluids, and new discoveries or steps forward pose, quite often, challenging and diffi cult new mathematical {::oblems. In this framework, a special role is played by incompressible nonviscous (sometimes called perfect) flows. This is a mathematical model consisting essentially of an evolution equation (the Euler equation) for the velocity field of fluids. Such an equation, which is nothing other than the Newton laws plus some additional structural hypo theses, was discovered by Euler in 1755, and although it is more than two centuries old, many fundamental questions concerning its solutions are still open. In particular, it is not known whether the solutions, for reasonably general initial conditions, develop singularities in a finite time, and very little is known about the long-term behavior of smooth solutions. These and other basic problems are still open, and this is one of the reasons why the mathe matical theory of perfect flows is far from being completed. Incompressible flows have been attached, by many distinguished mathe maticians, with a large variety of mathematical techniques so that, today, this field constitutes a very rich and stimulating part of applied mathematics.
The Mathematical Theory of Viscous Incompressible
Author: O.A. Ladyzhenskaya
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
The Single Server Queue
Author: J.W. Cohen
Publisher: Elsevier
ISBN: 0444596240
Category : Mathematics
Languages : en
Pages : 709
Book Description
This classic work, now available in paperback, concentrates on the basic models of queueing theory. It has a dual aim: to describe relevant mathematical techniques and to analyse the single server queue and its most important variants.
Publisher: Elsevier
ISBN: 0444596240
Category : Mathematics
Languages : en
Pages : 709
Book Description
This classic work, now available in paperback, concentrates on the basic models of queueing theory. It has a dual aim: to describe relevant mathematical techniques and to analyse the single server queue and its most important variants.
The Mathematical Theory of Viscous Incompressible Flow
Author: Ol'ga A. Ladyženskaja
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 0
Book Description
Viscous Incompressible Flow for Low Reynolds Numbers
Author: Mirela Kohr
Publisher: WIT Press (UK)
ISBN:
Category : Science
Languages : en
Pages : 456
Book Description
This book presents the fundamental mathematical theory of, and reviews state-of-the-art advances in, low Reynolds number viscous incompressible flow. The authors devote much of the text to the development of boundary integral methods for slow viscous flow pointing out new and important results.
Publisher: WIT Press (UK)
ISBN:
Category : Science
Languages : en
Pages : 456
Book Description
This book presents the fundamental mathematical theory of, and reviews state-of-the-art advances in, low Reynolds number viscous incompressible flow. The authors devote much of the text to the development of boundary integral methods for slow viscous flow pointing out new and important results.