Author: Jacqueline Dewar
Publisher: Springer
ISBN: 3319449508
Category : Mathematics
Languages : en
Pages : 382
Book Description
Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its value in the mathematical community. The writing is expository, not technical, and should be accessible and informative to a diverse audience. The primary readership includes all those in departments of mathematical sciences in two or four year colleges and universities, and their administrators, as well as graduate students. Researchers in education may also find topics of interest. Other potential readers include those doing work in mathematics education in schools of education, and teachers of secondary or middle school mathematics as well as those involved in their professional development.
Mathematics Education
Author: Jacqueline Dewar
Publisher: Springer
ISBN: 3319449508
Category : Mathematics
Languages : en
Pages : 382
Book Description
Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its value in the mathematical community. The writing is expository, not technical, and should be accessible and informative to a diverse audience. The primary readership includes all those in departments of mathematical sciences in two or four year colleges and universities, and their administrators, as well as graduate students. Researchers in education may also find topics of interest. Other potential readers include those doing work in mathematics education in schools of education, and teachers of secondary or middle school mathematics as well as those involved in their professional development.
Publisher: Springer
ISBN: 3319449508
Category : Mathematics
Languages : en
Pages : 382
Book Description
Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its value in the mathematical community. The writing is expository, not technical, and should be accessible and informative to a diverse audience. The primary readership includes all those in departments of mathematical sciences in two or four year colleges and universities, and their administrators, as well as graduate students. Researchers in education may also find topics of interest. Other potential readers include those doing work in mathematics education in schools of education, and teachers of secondary or middle school mathematics as well as those involved in their professional development.
Empowering Science and Mathematics Education in Urban Schools
Author: Edna Tan
Publisher: University of Chicago Press
ISBN: 0226037975
Category : Education
Languages : en
Pages : 215
Book Description
Argues that teachers and schools should create hybrid third spaces--neither classroom nor home--in which underserved students can merge their personal worlds with those of math and science.
Publisher: University of Chicago Press
ISBN: 0226037975
Category : Education
Languages : en
Pages : 215
Book Description
Argues that teachers and schools should create hybrid third spaces--neither classroom nor home--in which underserved students can merge their personal worlds with those of math and science.
Handbook of Research Design in Mathematics and Science Education
Author: Anthony Edward Kelly
Publisher: Routledge
ISBN: 1135705828
Category : Education
Languages : en
Pages : 984
Book Description
The Handbook of Research Design in Mathematics and Science Education is based on results from an NSF-supported project (REC 9450510) aimed at clarifying the nature of principles that govern the effective use of emerging new research designs in mathematics and science education. A primary goal is to describe several of the most important types of research designs that: * have been pioneered recently by mathematics and science educators; * have distinctive characteristics when they are used in projects that focus on mathematics and science education; and * have proven to be especially productive for investigating the kinds of complex, interacting, and adapting systems that underlie the development of mathematics or science students and teachers, or for the development, dissemination, and implementation of innovative programs of mathematics or science instruction. The volume emphasizes research designs that are intended to radically increase the relevance of research to practice, often by involving practitioners in the identification and formulation of the problems to be addressed or in other key roles in the research process. Examples of such research designs include teaching experiments, clinical interviews, analyses of videotapes, action research studies, ethnographic observations, software development studies (or curricula development studies, more generally), and computer modeling studies. This book's second goal is to begin discussions about the nature of appropriate and productive criteria for assessing (and increasing) the quality of research proposals, projects, or publications that are based on the preceding kind of research designs. A final objective is to describe such guidelines in forms that will be useful to graduate students and others who are novices to the fields of mathematics or science education research. The NSF-supported project from which this book developed involved a series of mini conferences in which leading researchers in mathematics and science education developed detailed specifications for the book, and planned and revised chapters to be included. Chapters were also field tested and revised during a series of doctoral research seminars that were sponsored by the University of Wisconsin's OERI-supported National Center for Improving Student Learning and Achievement in Mathematics and Science. In these seminars, computer-based videoconferencing and www-based discussion groups were used to create interactions in which authors of potential chapters served as "guest discussion leaders" responding to questions and comments from doctoral students and faculty members representing more than a dozen leading research universities throughout the USA and abroad. A Web site with additional resource materials related to this book can be found at http://www.soe.purdue.edu/smsc/lesh/ This internet site includes directions for enrolling in seminars, participating in ongoing discussion groups, and submitting or downloading resources which range from videotapes and transcripts, to assessment instruments or theory-based software, to publications or data samples related to the research designs being discussed.
Publisher: Routledge
ISBN: 1135705828
Category : Education
Languages : en
Pages : 984
Book Description
The Handbook of Research Design in Mathematics and Science Education is based on results from an NSF-supported project (REC 9450510) aimed at clarifying the nature of principles that govern the effective use of emerging new research designs in mathematics and science education. A primary goal is to describe several of the most important types of research designs that: * have been pioneered recently by mathematics and science educators; * have distinctive characteristics when they are used in projects that focus on mathematics and science education; and * have proven to be especially productive for investigating the kinds of complex, interacting, and adapting systems that underlie the development of mathematics or science students and teachers, or for the development, dissemination, and implementation of innovative programs of mathematics or science instruction. The volume emphasizes research designs that are intended to radically increase the relevance of research to practice, often by involving practitioners in the identification and formulation of the problems to be addressed or in other key roles in the research process. Examples of such research designs include teaching experiments, clinical interviews, analyses of videotapes, action research studies, ethnographic observations, software development studies (or curricula development studies, more generally), and computer modeling studies. This book's second goal is to begin discussions about the nature of appropriate and productive criteria for assessing (and increasing) the quality of research proposals, projects, or publications that are based on the preceding kind of research designs. A final objective is to describe such guidelines in forms that will be useful to graduate students and others who are novices to the fields of mathematics or science education research. The NSF-supported project from which this book developed involved a series of mini conferences in which leading researchers in mathematics and science education developed detailed specifications for the book, and planned and revised chapters to be included. Chapters were also field tested and revised during a series of doctoral research seminars that were sponsored by the University of Wisconsin's OERI-supported National Center for Improving Student Learning and Achievement in Mathematics and Science. In these seminars, computer-based videoconferencing and www-based discussion groups were used to create interactions in which authors of potential chapters served as "guest discussion leaders" responding to questions and comments from doctoral students and faculty members representing more than a dozen leading research universities throughout the USA and abroad. A Web site with additional resource materials related to this book can be found at http://www.soe.purdue.edu/smsc/lesh/ This internet site includes directions for enrolling in seminars, participating in ongoing discussion groups, and submitting or downloading resources which range from videotapes and transcripts, to assessment instruments or theory-based software, to publications or data samples related to the research designs being discussed.
Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics Education
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309212944
Category : Education
Languages : en
Pages : 96
Book Description
Numerous teaching, learning, assessment, and institutional innovations in undergraduate science, technology, engineering, and mathematics (STEM) education have emerged in the past decade. Because virtually all of these innovations have been developed independently of one another, their goals and purposes vary widely. Some focus on making science accessible and meaningful to the vast majority of students who will not pursue STEM majors or careers; others aim to increase the diversity of students who enroll and succeed in STEM courses and programs; still other efforts focus on reforming the overall curriculum in specific disciplines. In addition to this variation in focus, these innovations have been implemented at scales that range from individual classrooms to entire departments or institutions. By 2008, partly because of this wide variability, it was apparent that little was known about the feasibility of replicating individual innovations or about their potential for broader impact beyond the specific contexts in which they were created. The research base on innovations in undergraduate STEM education was expanding rapidly, but the process of synthesizing that knowledge base had not yet begun. If future investments were to be informed by the past, then the field clearly needed a retrospective look at the ways in which earlier innovations had influenced undergraduate STEM education. To address this need, the National Research Council (NRC) convened two public workshops to examine the impact and effectiveness of selected STEM undergraduate education innovations. This volume summarizes the workshops, which addressed such topics as the link between learning goals and evidence; promising practices at the individual faculty and institutional levels; classroom-based promising practices; and professional development for graduate students, new faculty, and veteran faculty. The workshops concluded with a broader examination of the barriers and opportunities associated with systemic change.
Publisher: National Academies Press
ISBN: 0309212944
Category : Education
Languages : en
Pages : 96
Book Description
Numerous teaching, learning, assessment, and institutional innovations in undergraduate science, technology, engineering, and mathematics (STEM) education have emerged in the past decade. Because virtually all of these innovations have been developed independently of one another, their goals and purposes vary widely. Some focus on making science accessible and meaningful to the vast majority of students who will not pursue STEM majors or careers; others aim to increase the diversity of students who enroll and succeed in STEM courses and programs; still other efforts focus on reforming the overall curriculum in specific disciplines. In addition to this variation in focus, these innovations have been implemented at scales that range from individual classrooms to entire departments or institutions. By 2008, partly because of this wide variability, it was apparent that little was known about the feasibility of replicating individual innovations or about their potential for broader impact beyond the specific contexts in which they were created. The research base on innovations in undergraduate STEM education was expanding rapidly, but the process of synthesizing that knowledge base had not yet begun. If future investments were to be informed by the past, then the field clearly needed a retrospective look at the ways in which earlier innovations had influenced undergraduate STEM education. To address this need, the National Research Council (NRC) convened two public workshops to examine the impact and effectiveness of selected STEM undergraduate education innovations. This volume summarizes the workshops, which addressed such topics as the link between learning goals and evidence; promising practices at the individual faculty and institutional levels; classroom-based promising practices; and professional development for graduate students, new faculty, and veteran faculty. The workshops concluded with a broader examination of the barriers and opportunities associated with systemic change.
Directions For Mathematics Research Experience For Undergraduates
Author: Yanir A Rubinstein
Publisher: World Scientific
ISBN: 9814630330
Category : Education
Languages : en
Pages : 253
Book Description
'The collection transcends the traditional institutional division lines (private, public, large, small, research, undergraduate, etc.) and has something to offer for readers in every realm of academia. The collection challenges the reader to think about how to implement and improve undergraduate research experiences, what such experiences mean to students and faculty, and how such experiences can take a permanent place in the modern preparation of undergraduate mathematics and STEM majors. The book is an open invitation to learn about what has worked and what hasn’t in the inspiration, and has the potential to ignite initiatives with long-lasting benefits to students and faculty nationwide.' See Full ReviewNotices of the AMS“The US National Science Foundation (NSF) Research Experiences for Undergraduates (REU) program in mathematics is now 25 years old, and it is a good time to think about what it has achieved, how it has changed, and where this idea will go next.”This was the premise of the conference held at Mt. Holyoke College during 21-22 June, 2013, and this circle of ideas is brought forward in this volume. The conference brought together diverse points of view, from NSF administrators, leaders of university-wide honors programs, to faculty who had led REUs, recent PhDs who are expected to lead them soon, and students currently in an REU themselves. The conversation was so varied that it justifies a book-length attempt to capture all that was suggested, reported, and said. Among the contributors are Ravi Vakil (Stanford), Haynes Miller (MIT), and Carlos Castillo-Chavez (Arizona, President's Obama Committee on the National Medal of Science 2010-2012).This book should serve not only as a collection of speakers' notes, but also as a source book for anyone interested in teaching mathematics and in the possibility of incorporating research-like experiences in mathematics classes at any level, as well as designing research experiences for undergraduates outside of the classroom.
Publisher: World Scientific
ISBN: 9814630330
Category : Education
Languages : en
Pages : 253
Book Description
'The collection transcends the traditional institutional division lines (private, public, large, small, research, undergraduate, etc.) and has something to offer for readers in every realm of academia. The collection challenges the reader to think about how to implement and improve undergraduate research experiences, what such experiences mean to students and faculty, and how such experiences can take a permanent place in the modern preparation of undergraduate mathematics and STEM majors. The book is an open invitation to learn about what has worked and what hasn’t in the inspiration, and has the potential to ignite initiatives with long-lasting benefits to students and faculty nationwide.' See Full ReviewNotices of the AMS“The US National Science Foundation (NSF) Research Experiences for Undergraduates (REU) program in mathematics is now 25 years old, and it is a good time to think about what it has achieved, how it has changed, and where this idea will go next.”This was the premise of the conference held at Mt. Holyoke College during 21-22 June, 2013, and this circle of ideas is brought forward in this volume. The conference brought together diverse points of view, from NSF administrators, leaders of university-wide honors programs, to faculty who had led REUs, recent PhDs who are expected to lead them soon, and students currently in an REU themselves. The conversation was so varied that it justifies a book-length attempt to capture all that was suggested, reported, and said. Among the contributors are Ravi Vakil (Stanford), Haynes Miller (MIT), and Carlos Castillo-Chavez (Arizona, President's Obama Committee on the National Medal of Science 2010-2012).This book should serve not only as a collection of speakers' notes, but also as a source book for anyone interested in teaching mathematics and in the possibility of incorporating research-like experiences in mathematics classes at any level, as well as designing research experiences for undergraduates outside of the classroom.
Transformational Change Efforts
Author: Wendy M. Smith
Publisher:
ISBN: 9781470464530
Category : Electronic books
Languages : en
Pages : 372
Book Description
The purpose of this handbook is to help launch institutional transformations in mathematics departments to improve student success. We report findings from the Student Engagement in Mathematics through an Institutional Network for Active Learning (SEMINAL) study. SEMINAL's purpose is to help change agents, those looking to (or currently attempting to) enact change within mathematics departments and beyond--trying to reform the instruction of their lower division mathematics courses in order to promote high achievement for all students. SEMINAL specifically studies the change mechanisms that al.
Publisher:
ISBN: 9781470464530
Category : Electronic books
Languages : en
Pages : 372
Book Description
The purpose of this handbook is to help launch institutional transformations in mathematics departments to improve student success. We report findings from the Student Engagement in Mathematics through an Institutional Network for Active Learning (SEMINAL) study. SEMINAL's purpose is to help change agents, those looking to (or currently attempting to) enact change within mathematics departments and beyond--trying to reform the instruction of their lower division mathematics courses in order to promote high achievement for all students. SEMINAL specifically studies the change mechanisms that al.
Data Science for Undergraduates
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309475597
Category : Education
Languages : en
Pages : 139
Book Description
Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
Publisher: National Academies Press
ISBN: 0309475597
Category : Education
Languages : en
Pages : 139
Book Description
Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
Shaping the Future: Perspectives on undergraduate education in science, mathematics, engineering, and technology
Author:
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 416
Book Description
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 416
Book Description
101 Careers in Mathematics: Fourth Edition
Author: Deanna Haunsperger
Publisher: American Mathematical Soc.
ISBN: 1470450852
Category : Mathematics
Languages : en
Pages : 296
Book Description
What can you do with a degree in math? This book addresses this question with 125 career profiles written by people with degrees and backgrounds in mathematics. With job titles ranging from sports analyst to science writer to inventory specialist to CEO, the volume provides ample evidence that one really can do nearly anything with a degree in mathematics. These professionals share how their mathematical education shaped their career choices and how mathematics, or the skills acquired in a mathematics education, is used in their daily work. The degrees earned by the authors profiled here are a good mix of bachelors, masters, and PhDs. With 114 completely new profiles since the third edition, the careers featured within accurately reflect current trends in the job market. College mathematics faculty, high school teachers, and career counselors will all find this a useful resource. Career centers, mathematics departments, and student lounges should have a copy available for student browsing. In addition to the career profiles, the volume contains essays from career counseling professionals on the topics of job-searching, interviewing, and applying to graduate school.
Publisher: American Mathematical Soc.
ISBN: 1470450852
Category : Mathematics
Languages : en
Pages : 296
Book Description
What can you do with a degree in math? This book addresses this question with 125 career profiles written by people with degrees and backgrounds in mathematics. With job titles ranging from sports analyst to science writer to inventory specialist to CEO, the volume provides ample evidence that one really can do nearly anything with a degree in mathematics. These professionals share how their mathematical education shaped their career choices and how mathematics, or the skills acquired in a mathematics education, is used in their daily work. The degrees earned by the authors profiled here are a good mix of bachelors, masters, and PhDs. With 114 completely new profiles since the third edition, the careers featured within accurately reflect current trends in the job market. College mathematics faculty, high school teachers, and career counselors will all find this a useful resource. Career centers, mathematics departments, and student lounges should have a copy available for student browsing. In addition to the career profiles, the volume contains essays from career counseling professionals on the topics of job-searching, interviewing, and applying to graduate school.
Everybody Counts
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309185521
Category : Education
Languages : en
Pages : 128
Book Description
Mathematics is the key to opportunity. No longer only the language of science, mathematics is now essential to business, finance, health, and defense. Yet because of the lack of mathematical literacy, many students are not prepared for tomorrow's jobs. Everybody Counts suggests solutions. Written for everyone concerned about our children's education, this book discusses why students in this country do not perform well in mathematics and outlines a comprehensive plan for revitalizing mathematics education in America, from kindergarten through college. single copy, $8.95; 2-9 copies, $7.50 each; 10 or more copies, $6.95 each (no other discounts apply)
Publisher: National Academies Press
ISBN: 0309185521
Category : Education
Languages : en
Pages : 128
Book Description
Mathematics is the key to opportunity. No longer only the language of science, mathematics is now essential to business, finance, health, and defense. Yet because of the lack of mathematical literacy, many students are not prepared for tomorrow's jobs. Everybody Counts suggests solutions. Written for everyone concerned about our children's education, this book discusses why students in this country do not perform well in mathematics and outlines a comprehensive plan for revitalizing mathematics education in America, from kindergarten through college. single copy, $8.95; 2-9 copies, $7.50 each; 10 or more copies, $6.95 each (no other discounts apply)