The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations PDF Author: A. K. Aziz
Publisher: Academic Press
ISBN: 1483267989
Category : Technology & Engineering
Languages : en
Pages : 814

Get Book Here

Book Description
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations PDF Author: A. K. Aziz
Publisher: Academic Press
ISBN: 1483267989
Category : Technology & Engineering
Languages : en
Pages : 814

Get Book Here

Book Description
The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations is a collection of papers presented at the 1972 Symposium by the same title, held at the University of Maryland, Baltimore County Campus. This symposium relates considerable numerical analysis involved in research in both theoretical and practical aspects of the finite element method. This text is organized into three parts encompassing 34 chapters. Part I focuses on the mathematical foundations of the finite element method, including papers on theory of approximation, variational principles, the problems of perturbations, and the eigenvalue problem. Part II covers a large number of important results of both a theoretical and a practical nature. This part discusses the piecewise analytic interpolation and approximation of triangulated polygons; the Patch test for convergence of finite elements; solutions for Dirichlet problems; variational crimes in the field; and superconvergence result for the approximate solution of the heat equation by a collocation method. Part III explores the many practical aspects of finite element method. This book will be of great value to mathematicians, engineers, and physicists.

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations PDF Author: A. K. Aziz
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 797

Get Book Here

Book Description


The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations PDF Author: A. K. Aziz
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 0

Get Book Here

Book Description


The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


The Finite Element Method for Elliptic Problems

The Finite Element Method for Elliptic Problems PDF Author: P.G. Ciarlet
Publisher: Elsevier
ISBN: 0080875254
Category : Mathematics
Languages : en
Pages : 551

Get Book Here

Book Description
The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.

An Introduction to the Mathematical Theory of Finite Elements

An Introduction to the Mathematical Theory of Finite Elements PDF Author: J. T. Oden
Publisher: Courier Corporation
ISBN: 0486142213
Category : Technology & Engineering
Languages : en
Pages : 450

Get Book Here

Book Description
This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.

˜Theœ mathematical foundations of the finite element method with applications to partial differential equations

˜Theœ mathematical foundations of the finite element method with applications to partial differential equations PDF Author: Abdul Kadir Aziz
Publisher:
ISBN:
Category :
Languages : en
Pages : 797

Get Book Here

Book Description


The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations

The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations PDF Author: Abdul K. Aziz
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


The Finite Element Method and Its Reliability

The Finite Element Method and Its Reliability PDF Author: Ivo Babuška
Publisher: Oxford University Press
ISBN: 9780198502760
Category : Mathematics
Languages : en
Pages : 820

Get Book Here

Book Description
The finite element method is a numerical method widely used in engineering. Experience shows that unreliable computation can lead to very serious consequences. Hence reliability questions stand are at the forefront of engineering and theoretical interests. This book presents the mathematical theory of the finite element method and is the first to focus on the questions of how reliable computed results really are. It addresses among other topics the local behaviour, errors caused by pollution, superconvergence, and optimal meshes. Many computational examples illustrate the importance of the theoretical conclusions for practical computations. Graduate students, lecturers, and researchers in mathematics, engineering, and scientific computation will benefit from the clear structure of the book, and will find this a very useful reference.

Mathematical Theory of Subdivision

Mathematical Theory of Subdivision PDF Author: Sandeep Kumar
Publisher: CRC Press
ISBN: 1351685449
Category : Mathematics
Languages : en
Pages : 247

Get Book Here

Book Description
This book provides good coverage of the powerful numerical techniques namely, finite element and wavelets, for the solution of partial differential equation to the scientists and engineers with a modest mathematical background. The objective of the book is to provide the necessary mathematical foundation for the advanced level applications of these numerical techniques. The book begins with the description of the steps involved in finite element and wavelets-Galerkin methods. The knowledge of Hilbert and Sobolev spaces is needed to understand the theory of finite element and wavelet-based methods. Therefore, an overview of essential content such as vector spaces, norm, inner product, linear operators, spectral theory, dual space, and distribution theory, etc. with relevant theorems are presented in a coherent and accessible manner. For the graduate students and researchers with diverse educational background, the authors have focused on the applications of numerical techniques which are developed in the last few decades. This includes the wavelet-Galerkin method, lifting scheme, and error estimation technique, etc. Features: • Computer programs in Mathematica/Matlab are incorporated for easy understanding of wavelets. • Presents a range of workout examples for better comprehension of spaces and operators. • Algorithms are presented to facilitate computer programming. • Contains the error estimation techniques necessary for adaptive finite element method. This book is structured to transform in step by step manner the students without any knowledge of finite element, wavelet and functional analysis to the students of strong theoretical understanding who will be ready to take many challenging research problems in this area.