The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations

The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations PDF Author: Jacob Bedrossian
Publisher: American Mathematical Society
ISBN: 1470471787
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover the fundamentals of the Navier-Stokes theory: derivation, special solutions, existence theory for strong solutions, Leray theory of weak solutions, weak-strong uniqueness, existence theory of mild solutions, and Prodi-Serrin regularity criteria. Chapter 6 provides a short guide to the must-read topics, including active research directions, for an advanced graduate student working in incompressible fluids. It may be used as a roadmap for a topics course in a subsequent semester. The appendix recalls basic results from real, harmonic, and functional analysis. Each chapter concludes with exercises, making the text suitable for a one-semester graduate course. Prerequisites to this book are the first two semesters of graduate-level analysis and PDE courses.

The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations

The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations PDF Author: Jacob Bedrossian
Publisher: American Mathematical Society
ISBN: 1470471787
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover the fundamentals of the Navier-Stokes theory: derivation, special solutions, existence theory for strong solutions, Leray theory of weak solutions, weak-strong uniqueness, existence theory of mild solutions, and Prodi-Serrin regularity criteria. Chapter 6 provides a short guide to the must-read topics, including active research directions, for an advanced graduate student working in incompressible fluids. It may be used as a roadmap for a topics course in a subsequent semester. The appendix recalls basic results from real, harmonic, and functional analysis. Each chapter concludes with exercises, making the text suitable for a one-semester graduate course. Prerequisites to this book are the first two semesters of graduate-level analysis and PDE courses.

The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations

The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations PDF Author: Jacob Bedrossian
Publisher: American Mathematical Society
ISBN: 1470470497
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover the fundamentals of the Navier-Stokes theory: derivation, special solutions, existence theory for strong solutions, Leray theory of weak solutions, weak-strong uniqueness, existence theory of mild solutions, and Prodi-Serrin regularity criteria. Chapter 6 provides a short guide to the must-read topics, including active research directions, for an advanced graduate student working in incompressible fluids. It may be used as a roadmap for a topics course in a subsequent semester. The appendix recalls basic results from real, harmonic, and functional analysis. Each chapter concludes with exercises, making the text suitable for a one-semester graduate course. Prerequisites to this book are the first two semesters of graduate-level analysis and PDE courses.

Observability and Mathematics

Observability and Mathematics PDF Author: Boris Khots
Publisher: CRC Press
ISBN: 1000466272
Category : Mathematics
Languages : en
Pages : 229

Get Book Here

Book Description
The author approaches an old classic problem - the existence of solutions of Navier-Stokes equations. The main objective is to model and derive of equation of continuity, Euler equation of fluid motion, energy flux equation, Navier-Stokes equations from the observer point of view and solve classic problem for this interpretation of fluid motion laws. If we have a piece of metal or a volume of liquid, the idea impresses itself upon us that it is divisible without limit, that any part of it, however small, would again have the same properties. But, wherever the methods of research in the physics of matter were refined sufficiently, limits to divisibility were reached that are not due to the inadequacy of our experiments but to the nature of the subject matter. Observability in mathematics were developed by the author based on denial of infinity idea. He introduces observers into arithmetic, and arithmetic becomes dependent on observers. And after that the basic mathematical parts also become dependent on observers. This approach permits to reconsider the fluid motion laws, analyze them and get solutions of classic problems. Table of Contents 1. Introduction. 2. Observability and Arithmetic. 3. Observability and Vector Algebra. 4. Observability and Mathematical Analysis (Calculus). 5. Classic Fluid Mechanics equations and Observability. 6. Observability and Thermodynamical equations. 7. Observability and equation of continuity. 8. Observability and Euler equation of motion of the fluid. 9. Observability and energy flux and moment flux equations. 10. Observability and incompressible fluids. 11. Observability and Navier-Stokes equations. 12. Observability and Relativistic Fluid Mechanics. 13. Appendix: Review of publications of the Mathematics with Observers. 14. Glossary. Bibliography Index Biography Boris Khots, DrSci, lives in Iowa, USA, Independent Researcher. Alma Mater - Moscow State Lomonosov University, Department of Mathematics and Mechanics (mech-math). Creator of Observer’s Mathematics. Participant of more than 30 Mathematical international congresses, conferences. In particular, participated with presentation at International Congresses of Mathematicians on 1998 (Germany), 2002 (China), 2006 (Spain), 2010 (India), 2014 (South Korea). More than 150 mathematical books and papers.

Mathematical Analysis of the Navier-Stokes Equations

Mathematical Analysis of the Navier-Stokes Equations PDF Author: Matthias Hieber
Publisher: Springer Nature
ISBN: 3030362264
Category : Mathematics
Languages : en
Pages : 471

Get Book Here

Book Description
This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H∞-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension. Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations.

Recent Progress in the Theory of the Euler and Navier–Stokes Equations

Recent Progress in the Theory of the Euler and Navier–Stokes Equations PDF Author: James C. Robinson
Publisher: Cambridge University Press
ISBN: 131658934X
Category : Mathematics
Languages : en
Pages : 247

Get Book Here

Book Description
The rigorous mathematical theory of the Navier–Stokes and Euler equations has been a focus of intense activity in recent years. This volume, the product of a workshop in Venice in 2013, consolidates, surveys and further advances the study of these canonical equations. It consists of a number of reviews and a selection of more traditional research articles on topics that include classical solutions to the 2D Euler equation, modal dependency for the 3D Navier–Stokes equation, zero viscosity Boussinesq equations, global regularity and finite-time singularities, well-posedness for the diffusive Burgers equations, and probabilistic aspects of the Navier–Stokes equation. The result is an accessible summary of a wide range of active research topics written by leaders in their field, together with some exciting new results. The book serves both as a helpful overview for graduate students new to the area and as a useful resource for more established researchers.

Lectures on Navier-Stokes Equations

Lectures on Navier-Stokes Equations PDF Author: Tai-Peng Tsai
Publisher:
ISBN: 9781470447786
Category : Fluid dynamics
Languages : en
Pages :

Get Book Here

Book Description
The book is an excellent contribution to the literature concerning the mathematical analysis of the incompressible Navier-Stokes equations. It provides a very good introduction to the subject, covering several important directions, and also presents a number of recent results, with an emphasis on non-perturbative regimes. The book is well written and both beginners and experts will benefit from it. It can also provide great material for a graduate course. --Vladimir Sverák, University of Minnesota This book is a graduate text on the incompressible Navier-Stokes system, which is of fundamental.

Applied Analysis of the Navier-Stokes Equations

Applied Analysis of the Navier-Stokes Equations PDF Author: Charles R. Doering
Publisher: Cambridge University Press
ISBN: 9780521445689
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This introductory physical and mathematical presentation of the Navier-Stokes equations focuses on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion.

New Trends and Results in Mathematical Description of Fluid Flows

New Trends and Results in Mathematical Description of Fluid Flows PDF Author: Miroslav Bulíček
Publisher: Springer
ISBN: 331994343X
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
The book presents recent results and new trends in the theory of fluid mechanics. Each of the four chapters focuses on a different problem in fluid flow accompanied by an overview of available older results. The chapters are extended lecture notes from the ESSAM school "Mathematical Aspects of Fluid Flows" held in Kácov (Czech Republic) in May/June 2017. The lectures were presented by Dominic Breit (Heriot-Watt University Edinburgh), Yann Brenier (École Polytechnique, Palaiseau), Pierre-Emmanuel Jabin (University of Maryland) and Christian Rohde (Universität Stuttgart), and cover various aspects of mathematical fluid mechanics – from Euler equations, compressible Navier-Stokes equations and stochastic equations in fluid mechanics to equations describing two-phase flow; from the modeling and mathematical analysis of equations to numerical methods. Although the chapters feature relatively recent results, they are presented in a form accessible to PhD students in the field of mathematical fluid mechanics.

Mathematical Analysis of Navier-Stokes Equations and Related Models

Mathematical Analysis of Navier-Stokes Equations and Related Models PDF Author: Yinghui Zhang
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659556340
Category : Navier-Stokes equations
Languages : en
Pages : 220

Get Book Here

Book Description
It is known that Navier-Stokes equations is one of the most important equations in Fluid Mechanics and gas dynamics. On May 24, 2000, the Clay Mathematics Institute of Cambridge, Massachusetts (CMI) has named Navier-Stokes equations: Existence and smoothness of Navier-Stokes equations on $R DEGREES3$ as one of seven million problems. In this book, our aim is to study existence and asymptotic behavior of the Navier-Stokes equations and related models. The closely related models such as the Navier-Stokes-Poisson equations, Navier-Stokes-Korteweg equations, Jin-Xin model and Euler equations with damping are also studied. This book consists of three parts. Part 1 is to study the existence and zero dissipation limit of one-dimensional Navier-Stokes equations of compressible, isentropic and non-isentropic gases, and Jin-Xin model. The second part is about the existence and asymptotic behavior of the higher dimensional Navier-Stokes equations, Navier-Stokes-Poisson equations and Navier-Stokes-Korteweg equations. The third part is about the existence and asymptotic behavior of the isentropic and non-isentropic Euler equations with

Navier–Stokes Equations

Navier–Stokes Equations PDF Author: Grzegorz Łukaszewicz
Publisher: Springer
ISBN: 331927760X
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
This volume is devoted to the study of the Navier–Stokes equations, providing a comprehensive reference for a range of applications: from advanced undergraduate students to engineers and professional mathematicians involved in research on fluid mechanics, dynamical systems, and mathematical modeling. Equipped with only a basic knowledge of calculus, functional analysis, and partial differential equations, the reader is introduced to the concept and applications of the Navier–Stokes equations through a series of fully self-contained chapters. Including lively illustrations that complement and elucidate the text, and a collection of exercises at the end of each chapter, this book is an indispensable, accessible, classroom-tested tool for teaching and understanding the Navier–Stokes equations. Incompressible Navier–Stokes equations describe the dynamic motion (flow) of incompressible fluid, the unknowns being the velocity and pressure as functions of location (space) and time variables. A solution to these equations predicts the behavior of the fluid, assuming knowledge of its initial and boundary states. These equations are one of the most important models of mathematical physics: although they have been a subject of vivid research for more than 150 years, there are still many open problems due to the nature of nonlinearity present in the equations. The nonlinear convective term present in the equations leads to phenomena such as eddy flows and turbulence. In particular, the question of solution regularity for three-dimensional problem was appointed by Clay Institute as one of the Millennium Problems, the key problems in modern mathematics. The problem remains challenging and fascinating for mathematicians, and the applications of the Navier–Stokes equations range from aerodynamics (drag and lift forces), to the design of watercraft and hydroelectric power plants, to medical applications such as modeling the flow of blood in the circulatory system.