Author: D.L. Johnson
Publisher: Springer Science & Business Media
ISBN: 1447106032
Category : Mathematics
Languages : en
Pages : 179
Book Description
In mathematics we are interested in why a particular formula is true. Intuition and statistical evidence are insufficient, so we need to construct a formal logical proof. The purpose of this book is to describe why such proofs are important, what they are made of, how to recognize valid ones, how to distinguish different kinds, and how to construct them. This book is written for 1st year students with no previous experience of formulating proofs. Dave Johnson has drawn from his considerable experience to provide a text that concentrates on the most important elements of the subject using clear, simple explanations that require no background knowledge of logic. It gives many useful examples and problems, many with fully-worked solutions at the end of the book. In addition to a comprehensive index, there is also a useful `Dramatis Personae` an index to the many symbols introduced in the text, most of which will be new to students and which will be used throughout their degree programme.
Elements of Logic via Numbers and Sets
Author: D.L. Johnson
Publisher: Springer Science & Business Media
ISBN: 1447106032
Category : Mathematics
Languages : en
Pages : 179
Book Description
In mathematics we are interested in why a particular formula is true. Intuition and statistical evidence are insufficient, so we need to construct a formal logical proof. The purpose of this book is to describe why such proofs are important, what they are made of, how to recognize valid ones, how to distinguish different kinds, and how to construct them. This book is written for 1st year students with no previous experience of formulating proofs. Dave Johnson has drawn from his considerable experience to provide a text that concentrates on the most important elements of the subject using clear, simple explanations that require no background knowledge of logic. It gives many useful examples and problems, many with fully-worked solutions at the end of the book. In addition to a comprehensive index, there is also a useful `Dramatis Personae` an index to the many symbols introduced in the text, most of which will be new to students and which will be used throughout their degree programme.
Publisher: Springer Science & Business Media
ISBN: 1447106032
Category : Mathematics
Languages : en
Pages : 179
Book Description
In mathematics we are interested in why a particular formula is true. Intuition and statistical evidence are insufficient, so we need to construct a formal logical proof. The purpose of this book is to describe why such proofs are important, what they are made of, how to recognize valid ones, how to distinguish different kinds, and how to construct them. This book is written for 1st year students with no previous experience of formulating proofs. Dave Johnson has drawn from his considerable experience to provide a text that concentrates on the most important elements of the subject using clear, simple explanations that require no background knowledge of logic. It gives many useful examples and problems, many with fully-worked solutions at the end of the book. In addition to a comprehensive index, there is also a useful `Dramatis Personae` an index to the many symbols introduced in the text, most of which will be new to students and which will be used throughout their degree programme.
The Logic of Infinity
Author: Barnaby Sheppard
Publisher: Cambridge University Press
ISBN: 1107058317
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book conveys to the novice the big ideas in the rigorous mathematical theory of infinite sets.
Publisher: Cambridge University Press
ISBN: 1107058317
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book conveys to the novice the big ideas in the rigorous mathematical theory of infinite sets.
Logic, Sets, and Numbers
Author: Frank Blume
Publisher: Createspace Independent Publishing Platform
ISBN: 9781973779360
Category :
Languages : en
Pages : 240
Book Description
Logic, Sets, and Numbers is a brief introduction to abstract mathematics that is meant to familiarize the reader with the formal and conceptual rigor that higher-level undergraduate and graduate textbooks commonly employ. Beginning with formal logic and a fairly extensive discussion of concise formulations of mathematical statements, the text moves on to cover general patterns of proofs, elementary set theory, mathematical induction, cardinality, as well as, in the final chapter, the creation of the various number systems from the integers up to the complex numbers. On the whole, the book's intent is not only to reveal the nature of mathematical abstraction, but also its inherent beauty and purity.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781973779360
Category :
Languages : en
Pages : 240
Book Description
Logic, Sets, and Numbers is a brief introduction to abstract mathematics that is meant to familiarize the reader with the formal and conceptual rigor that higher-level undergraduate and graduate textbooks commonly employ. Beginning with formal logic and a fairly extensive discussion of concise formulations of mathematical statements, the text moves on to cover general patterns of proofs, elementary set theory, mathematical induction, cardinality, as well as, in the final chapter, the creation of the various number systems from the integers up to the complex numbers. On the whole, the book's intent is not only to reveal the nature of mathematical abstraction, but also its inherent beauty and purity.
Good Math
Author: Mark C. Chu-Carroll
Publisher: Pragmatic Bookshelf
ISBN: 168050360X
Category : Computers
Languages : en
Pages : 261
Book Description
Mathematics is beautiful--and it can be fun and exciting as well as practical. Good Math is your guide to some of the most intriguing topics from two thousand years of mathematics: from Egyptian fractions to Turing machines; from the real meaning of numbers to proof trees, group symmetry, and mechanical computation. If you've ever wondered what lay beyond the proofs you struggled to complete in high school geometry, or what limits the capabilities of computer on your desk, this is the book for you. Why do Roman numerals persist? How do we know that some infinities are larger than others? And how can we know for certain a program will ever finish? In this fast-paced tour of modern and not-so-modern math, computer scientist Mark Chu-Carroll explores some of the greatest breakthroughs and disappointments of more than two thousand years of mathematical thought. There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular "Good Math" blog, you'll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird. Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing. If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark's book will both entertain and enlighten you.
Publisher: Pragmatic Bookshelf
ISBN: 168050360X
Category : Computers
Languages : en
Pages : 261
Book Description
Mathematics is beautiful--and it can be fun and exciting as well as practical. Good Math is your guide to some of the most intriguing topics from two thousand years of mathematics: from Egyptian fractions to Turing machines; from the real meaning of numbers to proof trees, group symmetry, and mechanical computation. If you've ever wondered what lay beyond the proofs you struggled to complete in high school geometry, or what limits the capabilities of computer on your desk, this is the book for you. Why do Roman numerals persist? How do we know that some infinities are larger than others? And how can we know for certain a program will ever finish? In this fast-paced tour of modern and not-so-modern math, computer scientist Mark Chu-Carroll explores some of the greatest breakthroughs and disappointments of more than two thousand years of mathematical thought. There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular "Good Math" blog, you'll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird. Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing. If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark's book will both entertain and enlighten you.
Once Upon A Number
Author: John Allen Paulos
Publisher: Basic Books
ISBN: 0786723998
Category : Science
Languages : en
Pages : 230
Book Description
What two things could be more different than numbers and stories? Numbers are abstract, certain, and eternal, but to most of us somewhat dry and bloodless. Good stories are full of life: they engage our emotions and have subtlety and nuance, but they lack rigor and the truths they tell are elusive and subject to debate. As ways of understanding the world around us, numbers and stories seem almost completely incompatible. Once Upon a Number shows that stories and numbers aren't as different as you might imagine, and in fact they have surprising and fascinating connections. The concepts of logic and probability both grew out of intuitive ideas about how certain situations would play out. Now, logicians are inventing ways to deal with real world situations by mathematical means -- by acknowledging, for instance, that items that are mathematically interchangeable may not be interchangeable in a story. And complexity theory looks at both number strings and narrative strings in remarkably similar terms. Throughout, renowned author John Paulos mixes numbers and narratives in his own delightful style. Along with lucid accounts of cutting-edge information theory we get hilarious anecdotes and jokes; instructions for running a truly impressive pyramid scam; a freewheeling conversation between Groucho Marx and Bertrand Russell (while they're stuck in an elevator together); explanations of why the statistical evidence against OJ Simpson was overwhelming beyond doubt and how the Unabomber's thinking shows signs of mathematical training; and dozens of other treats. This is another winner from America's favorite mathematician.
Publisher: Basic Books
ISBN: 0786723998
Category : Science
Languages : en
Pages : 230
Book Description
What two things could be more different than numbers and stories? Numbers are abstract, certain, and eternal, but to most of us somewhat dry and bloodless. Good stories are full of life: they engage our emotions and have subtlety and nuance, but they lack rigor and the truths they tell are elusive and subject to debate. As ways of understanding the world around us, numbers and stories seem almost completely incompatible. Once Upon a Number shows that stories and numbers aren't as different as you might imagine, and in fact they have surprising and fascinating connections. The concepts of logic and probability both grew out of intuitive ideas about how certain situations would play out. Now, logicians are inventing ways to deal with real world situations by mathematical means -- by acknowledging, for instance, that items that are mathematically interchangeable may not be interchangeable in a story. And complexity theory looks at both number strings and narrative strings in remarkably similar terms. Throughout, renowned author John Paulos mixes numbers and narratives in his own delightful style. Along with lucid accounts of cutting-edge information theory we get hilarious anecdotes and jokes; instructions for running a truly impressive pyramid scam; a freewheeling conversation between Groucho Marx and Bertrand Russell (while they're stuck in an elevator together); explanations of why the statistical evidence against OJ Simpson was overwhelming beyond doubt and how the Unabomber's thinking shows signs of mathematical training; and dozens of other treats. This is another winner from America's favorite mathematician.
Quantifiers, Propositions and Identity
Author: Robert Goldblatt
Publisher: Cambridge University Press
ISBN: 1107010527
Category : Mathematics
Languages : en
Pages : 283
Book Description
Develops new semantical characterisations of many logical systems with quantification that are incomplete under the traditional Kripkean possible worlds interpretation. This book is for mathematical or philosophical logicians, computer scientists and linguists, including academic researchers, teachers and advanced students.
Publisher: Cambridge University Press
ISBN: 1107010527
Category : Mathematics
Languages : en
Pages : 283
Book Description
Develops new semantical characterisations of many logical systems with quantification that are incomplete under the traditional Kripkean possible worlds interpretation. This book is for mathematical or philosophical logicians, computer scientists and linguists, including academic researchers, teachers and advanced students.
Bounded Arithmetic, Propositional Logic and Complexity Theory
Author: Jan Krajicek
Publisher: Cambridge University Press
ISBN: 0521452058
Category : Computers
Languages : en
Pages : 361
Book Description
Discusses the deep connections between logic and complexity theory, and lists a number of intriguing open problems.
Publisher: Cambridge University Press
ISBN: 0521452058
Category : Computers
Languages : en
Pages : 361
Book Description
Discusses the deep connections between logic and complexity theory, and lists a number of intriguing open problems.
Mathematical Logic
Author: Roman Kossak
Publisher: Springer
ISBN: 3319972987
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
Publisher: Springer
ISBN: 3319972987
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
A Tour Through Mathematical Logic
Author: Robert S. Wolf
Publisher: American Mathematical Soc.
ISBN: 161444028X
Category : Algebra, Abstract
Languages : en
Pages : 414
Book Description
A Tour Through Mathematical Logic provides a tour through the main branches of the foundations of mathematics. It contains chapters covering elementary logic, basic set theory, recursion theory, Gödel's (and others') incompleteness theorems, model theory, independence results in set theory, nonstandard analysis, and constructive mathematics. In addition, this monograph discusses several topics not normally found in books of this type, such as fuzzy logic, nonmonotonic logic, and complexity theory.
Publisher: American Mathematical Soc.
ISBN: 161444028X
Category : Algebra, Abstract
Languages : en
Pages : 414
Book Description
A Tour Through Mathematical Logic provides a tour through the main branches of the foundations of mathematics. It contains chapters covering elementary logic, basic set theory, recursion theory, Gödel's (and others') incompleteness theorems, model theory, independence results in set theory, nonstandard analysis, and constructive mathematics. In addition, this monograph discusses several topics not normally found in books of this type, such as fuzzy logic, nonmonotonic logic, and complexity theory.
Foundations of Logic and Mathematics
Author: Yves Nievergelt
Publisher: Springer Science & Business Media
ISBN: 146120125X
Category : Mathematics
Languages : en
Pages : 425
Book Description
This modern introduction to the foundations of logic and mathematics not only takes theory into account, but also treats in some detail applications that have a substantial impact on everyday life (loans and mortgages, bar codes, public-key cryptography). A first college-level introduction to logic, proofs, sets, number theory, and graph theory, and an excellent self-study reference and resource for instructors.
Publisher: Springer Science & Business Media
ISBN: 146120125X
Category : Mathematics
Languages : en
Pages : 425
Book Description
This modern introduction to the foundations of logic and mathematics not only takes theory into account, but also treats in some detail applications that have a substantial impact on everyday life (loans and mortgages, bar codes, public-key cryptography). A first college-level introduction to logic, proofs, sets, number theory, and graph theory, and an excellent self-study reference and resource for instructors.