Author: Murray R. Bremner
Publisher: CRC Press
ISBN: 1439807043
Category : Computers
Languages : en
Pages : 330
Book Description
First developed in the early 1980s by Lenstra, Lenstra, and Lovasz, the LLL algorithm was originally used to provide a polynomial-time algorithm for factoring polynomials with rational coefficients. It very quickly became an essential tool in integer linear programming problems and was later adapted for use in cryptanalysis. This book provides an i
The LLL Algorithm
Author: Phong Q. Nguyen
Publisher: Springer Science & Business Media
ISBN: 3642022952
Category : Computers
Languages : en
Pages : 503
Book Description
The first book to offer a comprehensive view of the LLL algorithm, this text surveys computational aspects of Euclidean lattices and their main applications. It includes many detailed motivations, explanations and examples.
Publisher: Springer Science & Business Media
ISBN: 3642022952
Category : Computers
Languages : en
Pages : 503
Book Description
The first book to offer a comprehensive view of the LLL algorithm, this text surveys computational aspects of Euclidean lattices and their main applications. It includes many detailed motivations, explanations and examples.
Lattice Basis Reduction
Author: Murray R. Bremner
Publisher: CRC Press
ISBN: 1439807043
Category : Computers
Languages : en
Pages : 330
Book Description
First developed in the early 1980s by Lenstra, Lenstra, and Lovasz, the LLL algorithm was originally used to provide a polynomial-time algorithm for factoring polynomials with rational coefficients. It very quickly became an essential tool in integer linear programming problems and was later adapted for use in cryptanalysis. This book provides an i
Publisher: CRC Press
ISBN: 1439807043
Category : Computers
Languages : en
Pages : 330
Book Description
First developed in the early 1980s by Lenstra, Lenstra, and Lovasz, the LLL algorithm was originally used to provide a polynomial-time algorithm for factoring polynomials with rational coefficients. It very quickly became an essential tool in integer linear programming problems and was later adapted for use in cryptanalysis. This book provides an i
Complexity of Lattice Problems
Author: Daniele Micciancio
Publisher: Springer Science & Business Media
ISBN: 1461508975
Category : Computers
Languages : en
Pages : 229
Book Description
Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De spite their apparent simplicity, lattices hide a rich combinatorial struc ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.
Publisher: Springer Science & Business Media
ISBN: 1461508975
Category : Computers
Languages : en
Pages : 229
Book Description
Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De spite their apparent simplicity, lattices hide a rich combinatorial struc ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.
Mathematics of Public Key Cryptography
Author: Steven D. Galbraith
Publisher: Cambridge University Press
ISBN: 1107013925
Category : Computers
Languages : en
Pages : 631
Book Description
This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.
Publisher: Cambridge University Press
ISBN: 1107013925
Category : Computers
Languages : en
Pages : 631
Book Description
This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.
A Course in Computational Algebraic Number Theory
Author: Henri Cohen
Publisher: Springer Science & Business Media
ISBN: 3662029456
Category : Mathematics
Languages : en
Pages : 556
Book Description
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.
Publisher: Springer Science & Business Media
ISBN: 3662029456
Category : Mathematics
Languages : en
Pages : 556
Book Description
A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.
Computational Cryptography
Author: Joppe Bos
Publisher:
ISBN: 1108848427
Category : Language Arts & Disciplines
Languages : en
Pages : 402
Book Description
The area of computational cryptography is dedicated to the development of effective methods in algorithmic number theory that improve implementation of cryptosystems or further their cryptanalysis. This book is a tribute to Arjen K. Lenstra, one of the key contributors to the field, on the occasion of his 65th birthday, covering his best-known scientific achievements in the field. Students and security engineers will appreciate this no-nonsense introduction to the hard mathematical problems used in cryptography and on which cybersecurity is built, as well as the overview of recent advances on how to solve these problems from both theoretical and practical applied perspectives. Beginning with polynomials, the book moves on to the celebrated Lenstra-Lenstra-Lovász lattice reduction algorithm, and then progresses to integer factorization and the impact of these methods to the selection of strong cryptographic keys for usage in widely used standards.
Publisher:
ISBN: 1108848427
Category : Language Arts & Disciplines
Languages : en
Pages : 402
Book Description
The area of computational cryptography is dedicated to the development of effective methods in algorithmic number theory that improve implementation of cryptosystems or further their cryptanalysis. This book is a tribute to Arjen K. Lenstra, one of the key contributors to the field, on the occasion of his 65th birthday, covering his best-known scientific achievements in the field. Students and security engineers will appreciate this no-nonsense introduction to the hard mathematical problems used in cryptography and on which cybersecurity is built, as well as the overview of recent advances on how to solve these problems from both theoretical and practical applied perspectives. Beginning with polynomials, the book moves on to the celebrated Lenstra-Lenstra-Lovász lattice reduction algorithm, and then progresses to integer factorization and the impact of these methods to the selection of strong cryptographic keys for usage in widely used standards.
Computation with Finitely Presented Groups
Author: Charles C. Sims
Publisher: Cambridge University Press
ISBN: 0521432138
Category : Mathematics
Languages : en
Pages : 624
Book Description
Research in computational group theory, an active subfield of computational algebra, has emphasised three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. The author emphasises the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito and Miller on computing nonabelian polycyclic quotients is described as a generalisation of Buchberger's Gröbner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups and theoretical computer scientists will find this book useful.
Publisher: Cambridge University Press
ISBN: 0521432138
Category : Mathematics
Languages : en
Pages : 624
Book Description
Research in computational group theory, an active subfield of computational algebra, has emphasised three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. The author emphasises the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito and Miller on computing nonabelian polycyclic quotients is described as a generalisation of Buchberger's Gröbner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups and theoretical computer scientists will find this book useful.
Cryptography and Computational Number Theory
Author: Kwok Y. Lam
Publisher: Birkhäuser
ISBN: 3034882955
Category : Computers
Languages : en
Pages : 376
Book Description
This volume contains the refereed proceedings of the Workshop on Cryptography and Computational Number Theory, CCNT'99, which has been held in Singapore during the week of November 22-26, 1999. The workshop was organized by the Centre for Systems Security of the Na tional University of Singapore. We gratefully acknowledge the financial support from the Singapore National Science and Technology Board under the grant num ber RP960668/M. The idea for this workshop grew out of the recognition of the recent, rapid development in various areas of cryptography and computational number the ory. The event followed the concept of the research programs at such well-known research institutions as the Newton Institute (UK), Oberwolfach and Dagstuhl (Germany), and Luminy (France). Accordingly, there were only invited lectures at the workshop with plenty of time for informal discussions. It was hoped and successfully achieved that the meeting would encourage and stimulate further research in information and computer security as well as in the design and implementation of number theoretic cryptosystems and other related areas. Another goal of the meeting was to stimulate collaboration and more active interaction between mathematicians, computer scientists, practical cryptographers and engineers in academia, industry and government.
Publisher: Birkhäuser
ISBN: 3034882955
Category : Computers
Languages : en
Pages : 376
Book Description
This volume contains the refereed proceedings of the Workshop on Cryptography and Computational Number Theory, CCNT'99, which has been held in Singapore during the week of November 22-26, 1999. The workshop was organized by the Centre for Systems Security of the Na tional University of Singapore. We gratefully acknowledge the financial support from the Singapore National Science and Technology Board under the grant num ber RP960668/M. The idea for this workshop grew out of the recognition of the recent, rapid development in various areas of cryptography and computational number the ory. The event followed the concept of the research programs at such well-known research institutions as the Newton Institute (UK), Oberwolfach and Dagstuhl (Germany), and Luminy (France). Accordingly, there were only invited lectures at the workshop with plenty of time for informal discussions. It was hoped and successfully achieved that the meeting would encourage and stimulate further research in information and computer security as well as in the design and implementation of number theoretic cryptosystems and other related areas. Another goal of the meeting was to stimulate collaboration and more active interaction between mathematicians, computer scientists, practical cryptographers and engineers in academia, industry and government.
The Algorithmic Resolution of Diophantine Equations
Author: Nigel P. Smart
Publisher: Cambridge University Press
ISBN: 9780521646338
Category : Mathematics
Languages : en
Pages : 264
Book Description
A coherent account of the computational methods used to solve diophantine equations.
Publisher: Cambridge University Press
ISBN: 9780521646338
Category : Mathematics
Languages : en
Pages : 264
Book Description
A coherent account of the computational methods used to solve diophantine equations.
Computational Aspects of Modular Forms and Galois Representations
Author: Bas Edixhoven
Publisher: Princeton University Press
ISBN: 0691142017
Category : Mathematics
Languages : en
Pages : 438
Book Description
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.
Publisher: Princeton University Press
ISBN: 0691142017
Category : Mathematics
Languages : en
Pages : 438
Book Description
Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.