Author: Jean Constant
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 84
Book Description
Volume 12 of the Math-Art series. This 3-part book is a visual exploration of knot geometry and ethnomathematics to celebrate the similarities between abstract geometry and unique cultures worldwide. Starting at latitude 0º, longitude 0º, the author set sail (virtually) westward at an average of 400 (nautical) knots a week to fully cover its circumference and explore 1 new knot each week for an entire year. Part I is the art portfolio extracted from the geometry models, part II is a detailed record of the original geometry used to create the artwork, and part III is the weekly wind map log showing the project’s positioning, actual winds, and currents in real-time. Each book includes 52 illustrations, notes, and references.
The Knot Geometry journey - Part I
Author: Jean Constant
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 84
Book Description
Volume 12 of the Math-Art series. This 3-part book is a visual exploration of knot geometry and ethnomathematics to celebrate the similarities between abstract geometry and unique cultures worldwide. Starting at latitude 0º, longitude 0º, the author set sail (virtually) westward at an average of 400 (nautical) knots a week to fully cover its circumference and explore 1 new knot each week for an entire year. Part I is the art portfolio extracted from the geometry models, part II is a detailed record of the original geometry used to create the artwork, and part III is the weekly wind map log showing the project’s positioning, actual winds, and currents in real-time. Each book includes 52 illustrations, notes, and references.
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 84
Book Description
Volume 12 of the Math-Art series. This 3-part book is a visual exploration of knot geometry and ethnomathematics to celebrate the similarities between abstract geometry and unique cultures worldwide. Starting at latitude 0º, longitude 0º, the author set sail (virtually) westward at an average of 400 (nautical) knots a week to fully cover its circumference and explore 1 new knot each week for an entire year. Part I is the art portfolio extracted from the geometry models, part II is a detailed record of the original geometry used to create the artwork, and part III is the weekly wind map log showing the project’s positioning, actual winds, and currents in real-time. Each book includes 52 illustrations, notes, and references.
The Knot Geometry journey - Part II
Author: Jean Constant
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 70
Book Description
Volume 12 of the Math-Art series. This 3-part book is a visual exploration of knot geometry and ethnomathematics to celebrate the similarities between abstract geometry and unique cultures worldwide. Starting at latitude 0º, longitude 0º, the author set sail (virtually) westward at an average of 400 (nautical) knots a week to fully cover its circumference and explore 1 new knot each week for an entire year. Part I is the art portfolio extracted from the geometry models, part II is a detailed record of the original geometry used to create the artwork, and part III is the weekly wind map log showing the project’s positioning, actual winds, and currents in real-time. Each book includes 52 illustrations, notes, and references.
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 70
Book Description
Volume 12 of the Math-Art series. This 3-part book is a visual exploration of knot geometry and ethnomathematics to celebrate the similarities between abstract geometry and unique cultures worldwide. Starting at latitude 0º, longitude 0º, the author set sail (virtually) westward at an average of 400 (nautical) knots a week to fully cover its circumference and explore 1 new knot each week for an entire year. Part I is the art portfolio extracted from the geometry models, part II is a detailed record of the original geometry used to create the artwork, and part III is the weekly wind map log showing the project’s positioning, actual winds, and currents in real-time. Each book includes 52 illustrations, notes, and references.
The Knot Geometry journey - Part III
Author: Jean Constant
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 23
Book Description
Volume 12 of the Math-Art series. This 3-part book is a visual exploration of knot geometry and ethnomathematics to celebrate the similarities between abstract geometry and unique cultures worldwide. Starting at latitude 0º, longitude 0º, the author set sail (virtually) westward at an average of 400 (nautical) knots a week to fully cover its circumference and explore 1 new knot each week for an entire year. Part I is the art portfolio extracted from the geometry models, part II is a detailed record of the original geometry used to create the artwork, and part III is the weekly wind map log showing the project’s positioning, actual winds, and currents in real-time. Each book includes 52 illustrations, notes, and references.
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 23
Book Description
Volume 12 of the Math-Art series. This 3-part book is a visual exploration of knot geometry and ethnomathematics to celebrate the similarities between abstract geometry and unique cultures worldwide. Starting at latitude 0º, longitude 0º, the author set sail (virtually) westward at an average of 400 (nautical) knots a week to fully cover its circumference and explore 1 new knot each week for an entire year. Part I is the art portfolio extracted from the geometry models, part II is a detailed record of the original geometry used to create the artwork, and part III is the weekly wind map log showing the project’s positioning, actual winds, and currents in real-time. Each book includes 52 illustrations, notes, and references.
Prime Number Geometry
Author: Jean Constant
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 91
Book Description
The 52 Illustration Prime Number series is a new chapter in the ongoing Math-Art collection exploring the world of mathematics and art. Inspired by the research of mathematicians from yesterday and today, this project aims to explore the visual aspect of numbers and highlight the unexpected connections between the challenging world of calculus, geometry, and art. Some will find references to ethnomathematics or a reflection on the universal cross-cultural appeal of mathematics; others will find a relation with the world we’re mapping for tomorrow, and hopefully, all will enjoy this unexpected interpretation of numbers from an artistic standpoint.
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 91
Book Description
The 52 Illustration Prime Number series is a new chapter in the ongoing Math-Art collection exploring the world of mathematics and art. Inspired by the research of mathematicians from yesterday and today, this project aims to explore the visual aspect of numbers and highlight the unexpected connections between the challenging world of calculus, geometry, and art. Some will find references to ethnomathematics or a reflection on the universal cross-cultural appeal of mathematics; others will find a relation with the world we’re mapping for tomorrow, and hopefully, all will enjoy this unexpected interpretation of numbers from an artistic standpoint.
Minimal Surfaces. Part 1 - The Art
Author: Jean Constant
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 75
Book Description
A two-part book on the exploration of minimal surfaces. In mathematics, a minimal surface is a surface for which the mean curvature H is zero at all points. These elegant and complex shapes found in Nature from butterflies, beetles, or black holes are studied today in statistics, material sciences, and architecture. I explored this singular shape from the perspective of a visual artist for 52 weeks, January-December 2021. Inspiring in many ways, the esthetics of these complex equations borne in the minds of brilliant scientists add a unique all-encompassing perspective to shapes and objects also found in Nature. I structured the project into part 1 – the art inspired by the shape- and part 2 - the plain visualization of the equations that stand in their own right as a beautiful expression of a mathematical mind at work. I included the informal log I kept throughout the journey in both parts. In part 2, I added the mathematical background that helped me understand the particular shape I was working on. Both sides complement each other in helping us appreciate these unrivaled original expressions of our environment.
Publisher: Hermay NM
ISBN:
Category : Art
Languages : en
Pages : 75
Book Description
A two-part book on the exploration of minimal surfaces. In mathematics, a minimal surface is a surface for which the mean curvature H is zero at all points. These elegant and complex shapes found in Nature from butterflies, beetles, or black holes are studied today in statistics, material sciences, and architecture. I explored this singular shape from the perspective of a visual artist for 52 weeks, January-December 2021. Inspiring in many ways, the esthetics of these complex equations borne in the minds of brilliant scientists add a unique all-encompassing perspective to shapes and objects also found in Nature. I structured the project into part 1 – the art inspired by the shape- and part 2 - the plain visualization of the equations that stand in their own right as a beautiful expression of a mathematical mind at work. I included the informal log I kept throughout the journey in both parts. In part 2, I added the mathematical background that helped me understand the particular shape I was working on. Both sides complement each other in helping us appreciate these unrivaled original expressions of our environment.
The Knot Book
Author: Colin Conrad Adams
Publisher: American Mathematical Soc.
ISBN: 0821836781
Category : Mathematics
Languages : en
Pages : 330
Book Description
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
Publisher: American Mathematical Soc.
ISBN: 0821836781
Category : Mathematics
Languages : en
Pages : 330
Book Description
Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
Low-Dimensional Geometry
Author: Francis Bonahon
Publisher: American Mathematical Soc.
ISBN: 082184816X
Category : Mathematics
Languages : en
Pages : 403
Book Description
The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.
Publisher: American Mathematical Soc.
ISBN: 082184816X
Category : Mathematics
Languages : en
Pages : 403
Book Description
The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.
Living Proof
Author: Allison K. Henrich
Publisher:
ISBN: 9781470452810
Category : Academic achievement
Languages : en
Pages : 136
Book Description
Wow! This is a powerful book that addresses a long-standing elephant in the mathematics room. Many people learning math ask ``Why is math so hard for me while everyone else understands it?'' and ``Am I good enough to succeed in math?'' In answering these questions the book shares personal stories from many now-accomplished mathematicians affirming that ``You are not alone; math is hard for everyone'' and ``Yes; you are good enough.'' Along the way the book addresses other issues such as biases and prejudices that mathematicians encounter, and it provides inspiration and emotional support for mathematicians ranging from the experienced professor to the struggling mathematics student. --Michael Dorff, MAA President This book is a remarkable collection of personal reflections on what it means to be, and to become, a mathematician. Each story reveals a unique and refreshing understanding of the barriers erected by our cultural focus on ``math is hard.'' Indeed, mathematics is hard, and so are many other things--as Stephen Kennedy points out in his cogent introduction. This collection of essays offers inspiration to students of mathematics and to mathematicians at every career stage. --Jill Pipher, AMS President This book is published in cooperation with the Mathematical Association of America.
Publisher:
ISBN: 9781470452810
Category : Academic achievement
Languages : en
Pages : 136
Book Description
Wow! This is a powerful book that addresses a long-standing elephant in the mathematics room. Many people learning math ask ``Why is math so hard for me while everyone else understands it?'' and ``Am I good enough to succeed in math?'' In answering these questions the book shares personal stories from many now-accomplished mathematicians affirming that ``You are not alone; math is hard for everyone'' and ``Yes; you are good enough.'' Along the way the book addresses other issues such as biases and prejudices that mathematicians encounter, and it provides inspiration and emotional support for mathematicians ranging from the experienced professor to the struggling mathematics student. --Michael Dorff, MAA President This book is a remarkable collection of personal reflections on what it means to be, and to become, a mathematician. Each story reveals a unique and refreshing understanding of the barriers erected by our cultural focus on ``math is hard.'' Indeed, mathematics is hard, and so are many other things--as Stephen Kennedy points out in his cogent introduction. This collection of essays offers inspiration to students of mathematics and to mathematicians at every career stage. --Jill Pipher, AMS President This book is published in cooperation with the Mathematical Association of America.
The Mathematical Universe
Author: William Dunham
Publisher: John Wiley & Sons
ISBN: 0471536563
Category : Mathematics
Languages : en
Pages : 323
Book Description
"Dunham writes for nonspecialists, and they will enjoy his piquantanecdotes and amusing asides -- Booklist "Artfully, Dunham conducts a tour of the mathematical universe. . .he believes these ideas to be accessible to the audience he wantsto reach, and he writes so that they are." -- Nature "If you want to encourage anyone's interest in math, get them TheMathematical Universe." * New Scientist
Publisher: John Wiley & Sons
ISBN: 0471536563
Category : Mathematics
Languages : en
Pages : 323
Book Description
"Dunham writes for nonspecialists, and they will enjoy his piquantanecdotes and amusing asides -- Booklist "Artfully, Dunham conducts a tour of the mathematical universe. . .he believes these ideas to be accessible to the audience he wantsto reach, and he writes so that they are." -- Nature "If you want to encourage anyone's interest in math, get them TheMathematical Universe." * New Scientist
Things to Make and Do in the Fourth Dimension
Author: Matt Parker
Publisher: Farrar, Straus and Giroux
ISBN: 0374710376
Category : Games & Activities
Languages : en
Pages : 465
Book Description
A book from the stand-up mathematician that makes math fun again! Math is boring, says the mathematician and comedian Matt Parker. Part of the problem may be the way the subject is taught, but it's also true that we all, to a greater or lesser extent, find math difficult and counterintuitive. This counterintuitiveness is actually part of the point, argues Parker: the extraordinary thing about math is that it allows us to access logic and ideas beyond what our brains can instinctively do—through its logical tools we are able to reach beyond our innate abilities and grasp more and more abstract concepts. In the absorbing and exhilarating Things to Make and Do in the Fourth Dimension, Parker sets out to convince his readers to revisit the very math that put them off the subject as fourteen-year-olds. Starting with the foundations of math familiar from school (numbers, geometry, and algebra), he reveals how it is possible to climb all the way up to the topology and to four-dimensional shapes, and from there to infinity—and slightly beyond. Both playful and sophisticated, Things to Make and Do in the Fourth Dimension is filled with captivating games and puzzles, a buffet of optional hands-on activities that entices us to take pleasure in math that is normally only available to those studying at a university level. Things to Make and Do in the Fourth Dimension invites us to re-learn much of what we missed in school and, this time, to be utterly enthralled by it.
Publisher: Farrar, Straus and Giroux
ISBN: 0374710376
Category : Games & Activities
Languages : en
Pages : 465
Book Description
A book from the stand-up mathematician that makes math fun again! Math is boring, says the mathematician and comedian Matt Parker. Part of the problem may be the way the subject is taught, but it's also true that we all, to a greater or lesser extent, find math difficult and counterintuitive. This counterintuitiveness is actually part of the point, argues Parker: the extraordinary thing about math is that it allows us to access logic and ideas beyond what our brains can instinctively do—through its logical tools we are able to reach beyond our innate abilities and grasp more and more abstract concepts. In the absorbing and exhilarating Things to Make and Do in the Fourth Dimension, Parker sets out to convince his readers to revisit the very math that put them off the subject as fourteen-year-olds. Starting with the foundations of math familiar from school (numbers, geometry, and algebra), he reveals how it is possible to climb all the way up to the topology and to four-dimensional shapes, and from there to infinity—and slightly beyond. Both playful and sophisticated, Things to Make and Do in the Fourth Dimension is filled with captivating games and puzzles, a buffet of optional hands-on activities that entices us to take pleasure in math that is normally only available to those studying at a university level. Things to Make and Do in the Fourth Dimension invites us to re-learn much of what we missed in school and, this time, to be utterly enthralled by it.