The Invariant Theory of Matrices

The Invariant Theory of Matrices PDF Author: Corrado De Concini
Publisher: American Mathematical Soc.
ISBN: 147044187X
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving (1) the first fundamental theorem that describes a set of generators in the ring of invariants, and (2) the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.

The Invariant Theory of Matrices

The Invariant Theory of Matrices PDF Author: Corrado De Concini
Publisher: American Mathematical Soc.
ISBN: 147044187X
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving (1) the first fundamental theorem that describes a set of generators in the ring of invariants, and (2) the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.

Lectures on Invariant Theory

Lectures on Invariant Theory PDF Author: Igor Dolgachev
Publisher: Cambridge University Press
ISBN: 9780521525480
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.

Invariant Subspaces of Matrices with Applications

Invariant Subspaces of Matrices with Applications PDF Author: Israel Gohberg
Publisher: SIAM
ISBN: 089871608X
Category : Mathematics
Languages : en
Pages : 706

Get Book Here

Book Description
This unique book addresses advanced linear algebra using invariant subspaces as the central notion and main tool. It comprehensively covers geometrical, algebraic, topological, and analytic properties of invariant subspaces, laying clear mathematical foundations for linear systems theory with a thorough treatment of analytic perturbation theory for matrix functions.

Algorithms in Invariant Theory

Algorithms in Invariant Theory PDF Author: Bernd Sturmfels
Publisher: Springer Science & Business Media
ISBN: 3211774173
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
This book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.

Matrix Theory

Matrix Theory PDF Author: Fuzhen Zhang
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.

Matrices

Matrices PDF Author: Denis Serre
Publisher: Springer Science & Business Media
ISBN: 1441976833
Category : Mathematics
Languages : en
Pages : 291

Get Book Here

Book Description
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.

Multiplicative Invariant Theory

Multiplicative Invariant Theory PDF Author: Martin Lorenz
Publisher: Springer Science & Business Media
ISBN: 3540273581
Category : Mathematics
Languages : en
Pages : 179

Get Book Here

Book Description
Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory.

Vector Spaces and Matrices

Vector Spaces and Matrices PDF Author: Robert M. Thrall
Publisher: Courier Corporation
ISBN: 0486321053
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
Students receive the benefits of axiom-based mathematical reasoning as well as a grasp of concrete formulations. Suitable as a primary or supplementary text for college-level courses in linear algebra. 1957 edition.

Random Matrix Theory

Random Matrix Theory PDF Author: Percy Deift
Publisher: American Mathematical Soc.
ISBN: 0821883577
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
"This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derived." --Book Jacket.

The Theory of Determinants, Matrices, and Invariants

The Theory of Determinants, Matrices, and Invariants PDF Author: H. W. Turnbull
Publisher:
ISBN:
Category : Determinants
Languages : en
Pages : 364

Get Book Here

Book Description